1
|
Yang S, Jiao D, Song T, Rui P, Fan R, Ma Z. Gene expression profiles of skin from cyclin dependent kinases 5-knockdown mice. Anim Biosci 2024; 37:567-575. [PMID: 37946423 PMCID: PMC10915219 DOI: 10.5713/ab.23.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This study aimed to identify genes regulated by cyclin dependent kinases 5 (CDK5) that participate in hair pigmentation in mice. METHODS The mRNA expression profiles of skin samples from CDK5-knockdown mice were constructed using high-throughput RNA sequencing and compared with those of wild-type mice. RESULTS In total, 8,002 known genes were differentially expressed between CDK5-knockdown and wild-type mice. Of these, 3,658 were upregulated and 4,344 were downregulated in the skin of CDK5-knockdown mice. An additional 318 previously unknown genes were also differentially expressed, with 171 downregulated and 147 upregulated genes in the skin of CDK5-knockdown mice. Of the known genes expressed in mouse skin, 80 were associated with hair color, with 61 showing lower expression and 19 exhibiting higher expression in skin of CDK5-knockdown mice. Importantly, the expression of the tyrosinase-related protein 1 (TYRP1) and the calcium signaling pathway were also found to be regulated by CDK5, suggesting that pigmentation is regulated by CDK5 via the calcium signaling pathway and TYRP1. CONCLUSION The transcriptome profiles obtained from the skin of CDK5-knockdown mice compared to wild-type mice provide a valuable resource to help understand the mechanism by which CDK5 regulates melanogenesis in mice and other animals.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Dingxing Jiao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Ping Rui
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801,
China
| | - Zengjun Ma
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600,
China
| |
Collapse
|
2
|
Hosseini S, Schmitt AO, Tetens J, Brenig B, Simianer H, Sharifi AR, Gültas M. In Silico Prediction of Transcription Factor Collaborations Underlying Phenotypic Sexual Dimorphism in Zebrafish ( Danio rerio). Genes (Basel) 2021; 12:873. [PMID: 34200177 PMCID: PMC8227731 DOI: 10.3390/genes12060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
The transcriptional regulation of gene expression in higher organisms is essential for different cellular and biological processes. These processes are controlled by transcription factors and their combinatorial interplay, which are crucial for complex genetic programs and transcriptional machinery. The regulation of sex-biased gene expression plays a major role in phenotypic sexual dimorphism in many species, causing dimorphic gene expression patterns between two different sexes. The role of transcription factor (TF) in gene regulatory mechanisms so far has not been studied for sex determination and sex-associated colour patterning in zebrafish with respect to phenotypic sexual dimorphism. To address this open biological issue, we applied bioinformatics approaches for identifying the predicted TF pairs based on their binding sites for sex and colour genes in zebrafish. In this study, we identified 25 (e.g., STAT6-GATA4; JUN-GATA4; SOX9-JUN) and 14 (e.g., IRF-STAT6; SOX9-JUN; STAT6-GATA4) potentially cooperating TFs based on their binding patterns in promoter regions for sex determination and colour pattern genes in zebrafish, respectively. The comparison between identified TFs for sex and colour genes revealed several predicted TF pairs (e.g., STAT6-GATA4; JUN-SOX9) are common for both phenotypes, which may play a pivotal role in phenotypic sexual dimorphism in zebrafish.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Functional Breeding Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Armin Otto Schmitt
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
| | - Henner Simianer
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany; (A.O.S.); (H.S.); (A.R.S.); (M.G.)
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, 59494 Soest, Germany
| |
Collapse
|
3
|
Mendoza MN, Raudsepp T, Alshanbari F, Gutiérrez G, Ponce de León FA. Chromosomal Localization of Candidate Genes for Fiber Growth and Color in Alpaca ( Vicugna pacos). Front Genet 2019; 10:583. [PMID: 31275359 PMCID: PMC6593342 DOI: 10.3389/fgene.2019.00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
The alpaca (Vicugna pacos) is an economically important and cultural signature species in Peru. Thus, molecular genomic information about the genes underlying the traits of interest, such as fiber properties and color, is critical for improved breeding and management schemes. Current knowledge about the alpaca genome, particularly the chromosomal location of such genes of interest is limited and lags far behind other livestock species. The main objective of this work was to localize alpaca candidate genes for fiber growth and color using fluorescence in situ hybridization (FISH). We report the mapping of candidate genes for fiber growth COL1A1, CTNNB1, DAB2IP, KRT15, KRTAP13-1, and TNFSF12 to chromosomes 16, 17, 4, 16, 1, and 16, respectively. Likewise, we report the mapping of candidate genes for fiber color ALX3, NCOA6, SOX9, ZIC1, and ZIC5 to chromosomes 9, 19, 16, 1, and 14, respectively. In addition, since KRT15 clusters with five other keratin genes (KRT31, KRT13, KRT9, KRT14, and KRT16) in scaffold 450 (Vic.Pac 2.0.2), the entire gene cluster was assigned to chromosome 16. Similarly, mapping NCOA6 to chromosome 19, anchored scaffold 34 with 8 genes, viz., RALY, EIF2S2, XPOTP1, ASIP, AHCY, ITCH, PIGU, and GGT7 to chromosome 19. These results are concordant with known conserved synteny blocks between camelids and humans, cattle and pigs.
Collapse
Affiliation(s)
- Mayra N. Mendoza
- Programa de Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Terje Raudsepp
- Molecular Cytogenetics and Genomics Laboratory, Texas A&M University, College Station, TX, United States
| | - Fahad Alshanbari
- Molecular Cytogenetics and Genomics Laboratory, Texas A&M University, College Station, TX, United States
| | - Gustavo Gutiérrez
- Programa de Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Peru
| | - F. Abel Ponce de León
- Department of Animal Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Functional Role of Cyclin-Dependent Kinase 5 in the Regulation of Melanogenesis and Epidermal Structure. Sci Rep 2017; 7:13783. [PMID: 29062096 PMCID: PMC5653820 DOI: 10.1038/s41598-017-12567-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian integumentary system plays important roles in body homeostasis, and dysfunction of melanogenesis or epidermal development may lead to a variety of skin diseases, including melanoma. Skin pigmentation in humans and coat color in fleece-producing animals are regulated by many genes. Among them, microphthalmia-associated transcription factor (MITF) and paired-box 3 (PAX3) are at the top of the cascade and regulate activities of many important melanogenic enzymes. Here, we report for the first time that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of MITF and PAX3. Cdk5 knockdown in mice causes a lightened coat color, a polarized distribution of melanin and hyperproliferation of basal keratinocytes. Reduced expression of Keratin 10 (K10) resulting from Cdk5 knockdown may be responsible for an abnormal epidermal structure. In contrast, overexpression of Cdk5 in sheep (Ovis aries) only produces brown patches on a white background, with no other observable abnormalities. Collectively, our findings show that Cdk5 has an important functional role in the regulation of melanin production and transportation and in normal development of the integumentary system.
Collapse
|
5
|
Cui Y, Song Y, Geng Q, Ding Z, Qin Y, Fan R, Dong C, Geng J. The expression of KRT2 and its effect on melanogenesis in alpaca skins. Acta Histochem 2016; 118:505-12. [PMID: 27265811 DOI: 10.1016/j.acthis.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
Abstract
In order to investigate the effects of the keratin 2 (KRT2) on alpaca melanocyte in vivo and vitro, the immunohistochemistry (IHC), quantitative real-time PCR (qPCR), Western blot, and alpaca melanocytes transfection methods were used. The results showed that mRNA and protein expression of KRT2 was highly expressed in brown skin in comparison with that in white skin. Moreover, we found that KRT2 was expressed in alpaca melanocytes in vitro by immunocytochemistry. After transfection with KRT2 in alpaca melanocytes, the relative mRNA and protein expression of KRT2, microphthalmia-associtated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) in alpaca skin melanocytes was increased with significant differences; a further result was the increase of melanin production. The results suggested that KRT2 functions in alpaca hair color formation, which offered an essential theoretical basis for further exploration of the role of melanogenesis.
Collapse
Affiliation(s)
- Yucong Cui
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yajun Song
- Tianshui Entry-Exit Inspection and Quarantine Bureau, Gansu, 741020, PR China
| | - Qingling Geng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Zengfeng Ding
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yilong Qin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Jianjun Geng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
6
|
Fan R, Xie J, Bai J, Wang H, Tian X, Bai R, Jia X, Yang L, Song Y, Herrid M, Gao W, He X, Yao J, Smith GW, Dong C. Skin transcriptome profiles associated with coat color in sheep. BMC Genomics 2013; 14:389. [PMID: 23758853 PMCID: PMC3689618 DOI: 10.1186/1471-2164-14-389] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/04/2013] [Indexed: 01/06/2023] Open
Abstract
Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep.
Collapse
Affiliation(s)
- Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|