1
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Dore A, Pasquaretta C, Henry D, Ricard E, Bompa JF, Bonneau M, Boissy A, Hazard D, Lihoreau M, Aubert H. A Non-Invasive Millimetre-Wave Radar Sensor for Automated Behavioural Tracking in Precision Farming-Application to Sheep Husbandry. SENSORS 2021; 21:s21238140. [PMID: 34884145 PMCID: PMC8662461 DOI: 10.3390/s21238140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/24/2023]
Abstract
The automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals. In contrast to conventional video tracking systems, radar tracking requires low processing power, is independent on light variations and has more accurate estimations of animal positions due to a lower misdetection rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor behavioural test used for assessing social motivation. We derived new estimators from the radar data that can be used to improve the behavioural phenotyping of the sheep. We then showed how radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable promises precision farming through high-throughput recording of the behaviour of untagged animals in different types of environments.
Collapse
Affiliation(s)
- Alexandre Dore
- Laboratory for Analysis and Architecture of Systems, Toulouse University, CNRS, INPT, 31400 Toulouse, France; (D.H.); (H.A.)
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier-Toulouse III, 31400 Toulouse, France; (C.P.); (M.L.)
- Correspondence:
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier-Toulouse III, 31400 Toulouse, France; (C.P.); (M.L.)
| | - Dominique Henry
- Laboratory for Analysis and Architecture of Systems, Toulouse University, CNRS, INPT, 31400 Toulouse, France; (D.H.); (H.A.)
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier-Toulouse III, 31400 Toulouse, France; (C.P.); (M.L.)
| | - Edmond Ricard
- GenPhySE, Toulouse University, INRAE, ENVT, 31326 Castanet Tolosan, France; (E.R.); (J.-F.B.); (D.H.)
| | - Jean-François Bompa
- GenPhySE, Toulouse University, INRAE, ENVT, 31326 Castanet Tolosan, France; (E.R.); (J.-F.B.); (D.H.)
| | | | - Alain Boissy
- UMR Herbivores, Clermont University, INRAE, VetAgro Sup, 63122 Saint-Genès Champanelle, France;
| | - Dominique Hazard
- GenPhySE, Toulouse University, INRAE, ENVT, 31326 Castanet Tolosan, France; (E.R.); (J.-F.B.); (D.H.)
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier-Toulouse III, 31400 Toulouse, France; (C.P.); (M.L.)
| | - Hervé Aubert
- Laboratory for Analysis and Architecture of Systems, Toulouse University, CNRS, INPT, 31400 Toulouse, France; (D.H.); (H.A.)
| |
Collapse
|
3
|
Microbial community and ovine host response varies with early and late stages of Haemonchus contortus infection. Vet Res Commun 2017; 41:263-277. [PMID: 29098532 DOI: 10.1007/s11259-017-9698-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023]
Abstract
The interactions between gastric microbiota, ovine host, and Haemonchus contortus portray the ovine gastric environment as a complex ecosystem, where all factors play a pertinent role in fine-tuning each other and in haemeostasis. We delineated the impact of early and late Haemonchus infection on abomasal and ruminal microbial community, as well as the ovine host. Twelve, parasite-naive lambs were divided into four groups, 7 days post-infection (dpi) and time-matched uninfected-control groups; 50 dpi and time-matched uninfected control groups were used for the experiment. Six sheep were inoculated with 5000 H. contortus infective larvae and followed for 7 or 50 days with their corresponding uninfected-control ones. Ovine abomasal tissues were collected for histological analysis and gastric fluids were collected for PH value measurements, microbial community isolation and Illumina MiSeq platform and bioinformatic analysis. Our results showed that Haemonchus infection increased the abomasal gastric pH (P = 0.05) and resulted in necrotizing and inflammatory changes that were more severe during acute infection. Furthermore, infection increased the abomasal bacterial load and decreased the ruminal microbiome. A 7-day infection of sheep with H. contortus significantly altered approximately 98% and 94% of genera in the abomasal and ruminal bacterial profile, respectively (P = 0.04-0.05). However, the approximate altered genera 50 days after infection in the ovine abomasal and ruminal microbiome were about 62% and 69%, correspondingly (P = 0.04-0.05) with increase in some bacteria and decrease in others. Overall, these results indicate that Haemonchus infection plays a crucial role in shaping stomach microbial community composition, and diversity.
Collapse
|
4
|
Meta-analysis of the parasitic phase traits of Haemonchus contortus infection in sheep. Parasit Vectors 2017; 10:201. [PMID: 28438225 PMCID: PMC5402645 DOI: 10.1186/s13071-017-2131-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/05/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The parasitic nematode Haemonchus contortus shows highly variable life history traits. This highlights the need to have an average estimate and a quantification of the variation around it to calibrate epidemiological models. METHODS This paper aimed to quantify the main life history traits of H. contortus and to identify explanatory factors affecting these traits using a powerful method based on a systematic review and meta-analysis of current literature. The life history traits considered are: (i) the establishment rate of ingested larvae; (ii) the adult mortality rate; (iii) the fertility (i.e. the number of eggs laid/female/day); and (iv) fecundity of female worms (i.e. the number of eggs per gram of faeces). RESULTS A total of 37 papers that report single experimental infection with H. contortus in sheep and published from 1960 to 2015, were reviewed and collated in this meta-analysis. This encompassed 115 experiments on 982 animals. Each trait was analysed using a linear model weighted by its inverse variance. The average (± SE) larval establishment rate was 0.24 ± 0.02, which decreased as a function of the infection dose and host age. An average adult mortality rate of 0.021 ± 0.002) was estimated from the literature. This trait varied as a function of animal age, breed and protective response due to prior exposure to the parasite. Average female fertility was 1295.9 ± 280.4 eggs/female/day and decreased in resistant breeds and previously infected hosts. Average faecal egg count at necropsy was 908.5 ± 487.1 eggs per gram of faeces and varied as a function of infection duration and host resistance. The average sex ratio of H. contortus was 0.51 ± 0.006. CONCLUSION This work is the first systematic review to summarise the available information on the parasitic phase of H. contortus in sheep. The results of the meta-analysis provide robust estimates of life history traits for parametrization of epidemiological models, their expected variation according to experimental factors, and provides correlations between these.
Collapse
|