1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Zhang J, Zha X, Yang G, Ma X, La Y, Wu X, Guo X, Chu M, Bao P, Yan P, Liang C. Polymorphisms of TXK and PLCE1 Genes and Their Correlation Analysis with Growth Traits in Ashidan Yaks. Animals (Basel) 2024; 14:3506. [PMID: 39682472 DOI: 10.3390/ani14233506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The tyrosine protein kinase (TXK) gene, as a member of the non-receptor tyrosine kinase Tec family, plays a vital role in signal transduction mediation. Phospholipase C epsilon 1 (PLCE1), a membrane-associated enzyme, is of paramount importance for the differentiation of myoblasts and the normal functioning of muscle tissue. In recent years, both of these genes have been reported to be associated with the economic traits of animals. This study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) in the TXK and PLCE1 genes and growth traits in Ashidan yaks and to search for potential molecular marker loci that can influence Ashidan yak breeding. A cGPS liquid microarray was utilized to genotype 232 Ashidan yaks and to analyze correlations between two SNP loci in the TXK and PLCE1 genes and yak body weight, body height, body length, and chest circumference at different periods. The results indicated that the g.55,999,531C>T locus of the TXK gene and the g.342,350T>G locus of the PLCE1 gene were significantly correlated with the growth traits of Ashidan yaks. Among these, individuals with the CC genotype at the g.55,999,531C>T locus showed a significantly higher body length at 6 months old compared to TT individuals, and those with the CT genotype at 12 months old had a significantly higher chest circumference than TT individuals. At the g.342,350T>G locus, the body height of GG genotype individuals at 18 months of age was significantly higher than that of TT genotype individuals and TG genotype individuals. The above findings can be used as theoretical support for the subsequent improvement of Ashidan yak breeding.
Collapse
Affiliation(s)
- Juanxiang Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China
| | - Guowu Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Qinghai Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China
| |
Collapse
|
3
|
La Y, Ma X, Bao P, Chu M, Yan P, Guo X, Liang C. Quantitative Proteomic Analysis Reveals Key Proteins Involved in Testicular Development of Yaks. Int J Mol Sci 2024; 25:8433. [PMID: 39126002 PMCID: PMC11313431 DOI: 10.3390/ijms25158433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Male reproductive health is largely determined already in the early development of the testis. Although much work has been carried out to study the mechanisms of testicular development and spermatogenesis, there was previously no information on the differences in the protein composition of yak testicles during early development. In this study, the protein profiles in the testicles of 6- (M6), 18- (M18), and 30-month-old (M30) yaks were comparatively analyzed using TMT proteomics. A total of 5521 proteins were identified, with 13, 1295, and 1397 differentially expressed proteins (DEPs) in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that DEPs were mainly involved in signaling pathways related to testicular development and spermatogenesis, including the MAPK, PI3K-Akt, Wnt, mTOR, TGF-β, and AMPK signaling pathways. Furthermore, we also identified eight potential proteins (TEX101, PDCL2, SYCP2, SYCP3, COL1A1, COL1A2, ADAM10, and ATF1) that may be related to the testicular development and spermatogenesis of yaks. This study may provide new insights into the molecular mechanisms of the testicular development and spermatogenesis of yaks.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
4
|
Peng W, Fu C, Shu S, Wang G, Wang H, Yue B, Zhang M, Liu X, Liu Y, Zhang J, Zhong J, Wang J. Whole-genome resequencing of major populations revealed domestication-related genes in yaks. BMC Genomics 2024; 25:69. [PMID: 38233755 PMCID: PMC10795378 DOI: 10.1186/s12864-024-09993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The yak is a symbol of the Qinghai-Tibet Plateau and provides important basic resources for human life on the plateau. Domestic yaks have been subjected to strong artificial selection and environmental pressures over the long-term. Understanding the molecular mechanisms of phenotypic differences in yak populations can reveal key functional genes involved in the domestication process and improve genetic breeding. MATERIAL AND METHOD Here, we re-sequenced 80 yaks (Maiwa, Yushu, and Huanhu populations) to identify single-nucleotide polymorphisms (SNPs) as genetic variants. After filtering and quality control, remaining SNPs were kept to identify the genome-wide regions of selective sweeps associated with domestic traits. The four methods (π, XPEHH, iHS, and XP-nSL) were used to detect the population genetic separation. RESULTS By comparing the differences in the population stratification, linkage disequilibrium decay rate, and characteristic selective sweep signals, we identified 203 putative selective regions of domestic traits, 45 of which were mapped to 27 known genes. They were clustered into 4 major GO biological process terms. All known genes were associated with seven major domestication traits, such as dwarfism (ANKRD28), milk (HECW1, HECW2, and OSBPL2), meat (SPATA5 and GRHL2), fertility (BTBD11 and ARFIP1), adaptation (NCKAP5, ANTXR1, LAMA5, OSBPL2, AOC2, and RYR2), growth (GRHL2, GRID2, SMARCAL1, and EPHB2), and the immune system (INPP5D and ADCYAP1R1). CONCLUSIONS We provided there is an obvious genetic different among domestic progress in these three yak populations. Our findings improve the understanding of the major genetic switches and domestic processes among yak populations.
Collapse
Affiliation(s)
- Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Guowen Wang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China
| | - Xinrui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China
| | - Yaxin Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China
| | - Jun Zhang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China.
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China.
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Sichuan Province and Ministry of Education), Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wang Y, Liu Y, Cao T, Shi C, Ren Z, Zhao Y. Quantitative proteomics analysis reveals the key proteins related to semen quality in Niangya yaks. Proteome Sci 2023; 21:20. [PMID: 37875878 PMCID: PMC10594827 DOI: 10.1186/s12953-023-00222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Proteins related to sperm motility and sperm morphology have an important impact on sperm function such as metabolism, motility and fertilisation etc. An understanding of the key proteins related to semen quality in Niangya yaks would help to provide support for breeding. However, the key proteins that affect semen quality in Niangya yaks remain unclear. METHODS Herein, we applied tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyze the expression levels of sperm proteins in groups of high- and low-quality semen from Niangya yaks. And fifteen differentially expressed proteins (DEPs) were randomly selected for expression level validation by parallel reaction monitoring (PRM). RESULTS Of the 2,092 quantified proteins, 280 were identified as DEPs in the high-quality group versus the low-quality group. Gene Ontology (GO) analysis revealed that in terms of biological pathways, the DEPs were mainly involved in metabolic processes, cell transformation processes, and single organism metabolic processes. In terms of cell composition, the DEPs were mainly located in the cell membrane, organelle, molecular complex. In terms of molecular functions, the most abundant functions of the DEPs were catalytic activity, binding activity, transport activity, and enzyme regulation activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were mainly involved in the cytokine and cytokine receptor interaction, notch signaling pathway, lysine biosynthesis, renal function-related protein and proteasome pathway. From protein-protein interaction (PPI) analysis of DEPs involved in important pathways, 6 related proteins affecting the semen quality of Niangya yaks were identified. And the results of the PRM and TMT analysis were consistent. CONCLUSIONS The differential sperm proteomic analysis of high- and low-quality semen from Niangya yaks, revealed 6 proteins (PSMC5, PSMD8, PSMB3, HSP90AA1, UGP2 and HSPB1), were mainly concentrated in energy production and metabolism, might play important roles in semen quality, which could serve as candidates for the selection and breeding of Niangya yaks.
Collapse
Affiliation(s)
- Yaomei Wang
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Yuchao Liu
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Tingting Cao
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Chunyuan Shi
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Zili Ren
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Yanling Zhao
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China.
| |
Collapse
|
6
|
Jiang H, Chai ZX, Cao HW, Zhang CF, Zhu Y, Zhang Q, Xin JW. Genome-wide identification of SNPs associated with body weight in yak. BMC Genomics 2022; 23:833. [PMID: 36522700 PMCID: PMC9756674 DOI: 10.1186/s12864-022-09077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The yak is the most important livestock in the Qinghai-Tibet Plateau, and body weight directly affects the economic values of yak. Up to date, the genome-wide profiling of single-nucleotide polymorphisms (SNPs) associating with body weight has not been reported in yak. In the present study, the SNPs in 480 yaks from three breeds were analyzed using the commercial high-density (600 K) yak SNP chips. RESULTS The results identified 12 and 4 SNPs potentially associated with body weight in male and female yaks, respectively. Among them, 9 and 2 SNPs showed significant difference in yak body weight between different genotypes at each locus in male and female yaks, respectively. Further exploration found 33 coding genes within the 100 kbp upstream or downstream to the SNP loci, which might be potentially affected by the variation of SNPs. Among them, G protein-coupled receptor kinase 4 (GRK4) might be potentially affected by the SNP AX-174555047, which has been reported to affect the functioning of two body-weight associated hormones (parathyroid hormone, PTH, and adrenomedullin, ADM). Determination of PTH and ADM levels in yak revealed positive relationship between PTH level and body weight, negative relationship between ADM level and body weight along with the variation of AX-174555047 mutation. CONCLUSIONS These results suggested that the SNP AX-174555047 might potentially affect body weight through mediating GRK4 expression and then PTH and ADM functioning. Thus, the SNP AX-174555047 might be used as a biomarker for molecular breeding of yak. More investigations are required to validate this point.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Zhi-Xin Chai
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041 Sichuan China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| |
Collapse
|
7
|
Genome-Wide Association Study of Body Weight Trait in Yaks. Animals (Basel) 2022; 12:ani12141855. [PMID: 35883402 PMCID: PMC9311934 DOI: 10.3390/ani12141855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/03/2023] Open
Abstract
The yak is the largest meat-producing mammal around the Tibetan Plateau, and it plays an important role in the economic development and maintenance of the ecological environment throughout much of the Asian highlands. Understanding the genetic components of body weight is key for future improvement in yak breeding; therefore, genome-wide association studies (GWAS) were performed, and the results were used to mine plant and animal genetic resources. We conducted whole genome sequencing on 406 Maiwa yaks at 10 × coverage. Using a multiple loci mixed linear model (MLMM), fixed and random model circulating probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK), we found that a total of 25,000 single-nucleotide polymorphisms (SNPs) were distributed across chromosomes, and seven markers were identified as significantly (p-values < 3.91 × 10−7) associated with the body weight trait,. Several candidate genes, including MFSD4, LRRC37B, and NCAM2, were identified. This research will help us achieve a better understanding of the genotype−phenotype relationship for body weight.
Collapse
|
8
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
9
|
Gui L, Raza SHA, Sun Y, Sabek A, Abbas SQ, Shah MA, Khan R, Abdelnour SA. Molecular characterization and analysis of the association of growth hormone 1 gene with growth traits in Chinese indigenous yak (Bos grunniens). Trop Anim Health Prod 2021; 53:221. [PMID: 33754201 DOI: 10.1007/s11250-021-02671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effects of polymorphisms in growth hormone 1 (GH1) gene on the growth traits in Chinese indigenous yak. Using the polymerase chain reaction-restriction fragment length polymorphism (PCR-PFLP) approach, one novel single-nucleotide polymorphism (SNP), termed as g.1721G>A, was identified in the exon 4 of GH1 gene in 423 individuals of yak population. Based on the chi-square (χ2) test, the frequencies of g.1721G>A alleles agreed with Hardy-Weinberg equilibrium (HWE) (P < 0.05). A significant association was observed between this SNP and several growth traits (P < 0.01 or P < 0.05), in which the genotype GG exhibited the best values. The present study suggested that the identified SNP was a useful genetic marker for the improvement of growth traits in Chinese indigenous yak.
Collapse
Affiliation(s)
- Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yonggang Sun
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Ahmed Sabek
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sayed Qaisar Abbas
- Department of Management Sciences, National University of Modern Languages, Islamabad, Pakistan
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
10
|
Al-Thuwaini TM, Al-Shuhaib MBS, Lepretre F, Dawud HH. Two co-inherited novel SNPs in the MC4R gene related to live body weight and hormonal assays in Awassi and Arabi sheep breeds of Iraq. Vet Med Sci 2020; 7:897-907. [PMID: 33369226 PMCID: PMC8136946 DOI: 10.1002/vms3.421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/10/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Melanocortin‐4 receptor (MC4R) gene plays a key role in the regulation of body weight and energy homeostasis. This study aims to evaluate the association of single nucleotide polymorphisms (SNPs) of the MC4R gene with live body weight and hormonal assays in two breeds of sheep that differ in productive performance, Awassi and Arabi. All known coding sequences of the MC4R gene were covered in this study. DNA samples from 150 animals (Awassi and Arabi breed) were genotyped by PCR‐single‐strand conformation polymorphism (PCR‐SSCP) to assess their pattern of genetic variation. Concerning exon 1, clear heterogeneity was detected with three different SSCP‐banding patterns. The sequencing reactions confirmed these variations by detecting the presence of the two novel SNPs, 107G/C and 138A/C, and three genotypes, GC, AC and AA. The 107G/C SNP was detected in GC genotype, while the 138A/C was detected on both GC and AC genotypes. The other SSCP‐banding pattern (AA genotype) did not show any detectable unique variation. Both SNPs were closely and strongly linked in both breeds (D' and r2 values were 1.00), which signifies that both loci were co‐inherited as one unit. Association analysis indicated that both breeds with GC/AC haplotype showed higher live body weight (37.250 ± 0.790) relative to the GG/AA (30.244 ± 0.968) and CC/CC (47.231 ± 1.230) haplotypes (p < .05). Concerning the genotyping of exon 2, only 362 bp showed heterogeneity with a missense mutation, with no significant association (p > .05) with the measured traits. In conclusion, the two novel SNPs (107G/C and 138 A/C) were highly associated with live body weight in both breeds. Haplotype analysis confirmed that these two novel SNPs were in strong linkage disequilibrium (LD) and could be used as genetic markers for sheep phenotypic trait improvement.
Collapse
Affiliation(s)
- Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| | | | - Frederic Lepretre
- University of Lille, Plateau de Genomique Fonctionnelle et Structurale, Lille, France
| | - Halla Hassan Dawud
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| |
Collapse
|
11
|
The genetic polymorphisms of melanocortin-4 receptor gene are associated with carcass quality traits in a Chinese indigenous beef cattle breed. Res Vet Sci 2020; 132:202-206. [PMID: 32604043 DOI: 10.1016/j.rvsc.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
Melanocortin-4 receptor (MC4R) was considered as an essential modifiers in feelings intake, the regulation of metabolism and body weight. This study aimed at identifying polymorphisms in MC4R gene that might associate with carcass quality traits in Chinese indigenous beef cattle breed. qPCR analysis showed that the MC4R gene was widely expressed in various tissues, with predominantly expression levels in heart. Three single-nucleotide polymorphisms (SNPs) were identified, including a mutation (g.85A > G) in 5'untranslated regions (UTR) and two mutations (g.927C > T and g.1069C > G) in exon 1. Based on the χ2 test, both g.927C > T and g.1069C > G loci fitted with Hardy-Weinberg equilibrium (P > .05). Population genetic analysis showed that except for g.85A > G, the other detected SNPs strongly affected the bovine back fat thickness and intramuscular fat content (P < .05). The individuals with Hap1/4 diplotypes (ACC-ATG) were highly significantly associated with carcass quality traits than the other diplotypes (P < .01 or P < .05). Results indicated that the bovine MC4R gene polymorphisms were implicated as genetic markers of potential importance in marker-assisted selection (MAS) strategies to improve carcass quality in Chinese Qinchuan cattle.
Collapse
|
12
|
Yu DY, Wu RZ, Zhao Y, Nie ZH, Wei L, Wang TY, Liu ZP. Polymorphisms of four candidate genes and their correlations with growth traits in blue fox (Alopex lagopus). Gene 2019; 717:143987. [PMID: 31362037 DOI: 10.1016/j.gene.2019.143987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022]
Abstract
To improve the accuracy and genetic progress of blue fox breeding, the relationships between genetic polymorphisms and growth and reproductive traits of the blue fox were investigated. MC4R, MC3R, INHA and INHBA were selected as candidate genes for molecular evolution and statistical analyses. Single-factor variance analyses showed that the MC4R (g.267C > T, g.423C > T, and g.731C > A) and MC3R (g.677C > T) genotypes had significant impacts on body weight, chest circumference, abdominal perimeter and body mass index (BMI) (P < 0.05) in blue fox. The MC4R and MC3R combined genotypes had significant effects on the body weight and abdominal circumference. The different genotypes of INHA g.75G > A had significant effects on female fecundity, whereas the different genotypes of INHBA g.404G > T and g.467G > T and the INHA and INHBA combined genotypes had significant effects on male fecundity. The proteins encoded by the open reading frames (ORFs) of different polymorphic loci were predicted and analysed. The aims of this study were to identify genetic markers related to growth and reproduction in the blue fox and to provide an efficient, economical and accurate theoretical approach for auxiliary fox breeding.
Collapse
Affiliation(s)
- Dong-Yue Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Ru-Zi Wu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Yao Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Zi-Han Nie
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Lai Wei
- Hualong Blue Fox Breeding Company, Harbin, China
| | - Tian-Yi Wang
- Hualong Blue Fox Breeding Company, Harbin, China
| | - Zhi-Ping Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China.
| |
Collapse
|
13
|
Shishay G, Liu G, Jiang X, Yu Y, Teketay W, Du D, Jing H, Liu C. Variation in the Promoter Region of the MC4R Gene Elucidates the Association of Body Measurement Traits in Hu Sheep. Int J Mol Sci 2019; 20:E240. [PMID: 30634446 PMCID: PMC6358852 DOI: 10.3390/ijms20020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022] Open
Abstract
The melanocortin 4 receptor (MC4R) gene is expressed in the appetite-regulating areas of the brain and is engaged in the leptin signaling pathway. Although previous studies have identified variants in the coding region of the sheep MC4R gene showing significant associations with birth weight, weaning weight, and backfat thickness, no such associations have been reported for the promoter region. Besides, the essential promoter region of the sheep MC4R has not been delineated. In this study, to better understand the transcriptional regulation of MC4R and to elucidate the association between regulatory variants and haplotypes with body measurement traits in sheep, we cloned and characterized the MC4R promoter. We found that the minimal promoter of the gene is located within the region -1207/-880 bp upstream of the first exon. Real-time quantitative PCR (RT-qPCR) data revealed the mRNA expression of the MC4R gene had a significant difference between sex and age. In the association analysis, eight single nucleotide polymorphisms (SNPs) had a significant association with one or more traits (p < 0.05); of these, two SNPs were novel. Notably, individuals with haplotype H1H2 (CT-GA-GT-GA-GT-GA-GA-CG) were heavier in body weight than other haplotypes. Altogether, variations in the MC4R gene promoter, most notably haplotype H1H2, may greatly benefit marker-assisted selection in sheep.
Collapse
Affiliation(s)
- Girmay Shishay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Yu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wassie Teketay
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dandan Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huang Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenghui Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Association between expression levels and growth trait-related SNPs located in promoters of the MC4R and MSTN genes in Spinibarbus hollandi. Genes Genomics 2018; 40:1119-1125. [PMID: 30315516 DOI: 10.1007/s13258-018-0666-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
Melanocortin 4 receptor: (MC4R) and Myostatin (MSTN) are two important growth trait-related genes in animals. In this study, we showed that two SNPs, MC4R-719A>G and MSTN-519C>T, found in the promoters of the MC4R and MSTN genes, respectively, are both associated with growth traits in Spinibarbus hollandi. Furthermore, we observed that there were significant associations between the expression levels of the MC4R and MSTN genes and these two growth trait-related SNPs. The expression level of MC4R gene in brain was lower in GG genotype fish with extremely high growth performance than that in AA genotype fish with extremely low growth performance. Expression level of the MSTN gene in muscle was lower in TT genotype fish with extremely high growth performance than that in CC and CT genotype fish with lower growth performance. The results indicated that these SNPs located in the promoters of MC4R and MSTN are associated with growth-related traits through modification of gene expression levels. The MSTN and MC4R SNPs may have useful application in effective marker-assisted selection aimed to increase output in S. hollandi.
Collapse
|
15
|
Huang YZ, Wang Q, Zhang CL, Fang XT, Song EL, Chen H. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds. Anim Biotechnol 2016; 27:190-8. [PMID: 27119984 DOI: 10.1080/10495398.2016.1164178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.
Collapse
Affiliation(s)
- Yong-Zhen Huang
- a Institute of Cellular and Molecular Biology , Jiangsu Normal University , Xuzhou Jiangsu , China.,b College of Animal Science and Technology , Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture , Yangling Shaanxi , China
| | - Qin Wang
- a Institute of Cellular and Molecular Biology , Jiangsu Normal University , Xuzhou Jiangsu , China
| | - Chun-Lei Zhang
- a Institute of Cellular and Molecular Biology , Jiangsu Normal University , Xuzhou Jiangsu , China
| | - Xing-Tang Fang
- a Institute of Cellular and Molecular Biology , Jiangsu Normal University , Xuzhou Jiangsu , China
| | - En-Liang Song
- c Institute of Animal Husbandry and Veterinary , Shandong Academy of Agricultural Sciences , Jinan , Shandong , China
| | - Hong Chen
- a Institute of Cellular and Molecular Biology , Jiangsu Normal University , Xuzhou Jiangsu , China
| |
Collapse
|
16
|
Abstract
Cattleyak (hybrid of cattle and yak) exhibit higher capability in adaptability and production than cattle and yak, while the infertility of F1 males greatly restricts the effective utilization of this hybrid and little progress has been made on investigating the mechanisms of the cattleyak infertility. Cattleyak individuals at three development stages (10, 12 and 14-month old) were sampled in this work and the isobaric tag for relative and absolute quantification method was employed to identify differences between their testicular proteomes. The proteomic analysis identified 318 proteins differentially expressed with significance at 12-month stage and 327 at 14-month compared with 10-month stage, respectively. Compared with the testicular proteome from 10-month cattleyak, the gene ontology (GO) annotations of the differentially expressed proteins at 12 months did not indicate significant differences from those at 14 months, which confirmed the histological observation that germ cell reduction was more obvious and spermatogenic arrest may become more serious in 12-month-old cattleyak. On the other hand, 56 differentially expressed proteins were coexpressed at 12 and 14-month stage compared with 10-month stage, in which 32 proteins were upregulated and 24 downregulated. GO analysis revealed that most of the differently expressed proteins were involved in the molecular function of catalytic activity, transporter activity, oxidoreductase activity and protein binding. Further analysis indicated that the differently expressed proteins including testis-expressed protein 101 precursor, RNA-binding motif protein, X chromosome, putative RNA-binding protein 3, heparin-binding proteins, tudor domain-containing protein 1, glutathione S-transferases (GSTA2, GSTP1), heat shock-related 70 kDa protein 2, estradiol 17-β-dehydrogenase11, 2,4-dienoyl-CoA reductase and peroxiredoxin-2 were possibly associated with testis development and spermatogenesis, which could be selected as candidate proteins in future study to examine the mechanisms of cattleyak infertility.
Collapse
|