1
|
Shahidpour F, Pourentezari M, Mehrjerdi FZ, Hosseini M. Lawsonia inermis improves sperm parameters and testicular tissue changes caused by lipopolysaccharide. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2023; 15:267-273. [DOI: 10.1007/s13530-023-00180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 03/05/2025]
|
2
|
Influence of Maternal Infection and Pregnancy Complications on Cord Blood Telomere Length. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3339456. [PMID: 34616503 PMCID: PMC8487834 DOI: 10.1155/2021/3339456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Background Exposure to suboptimal intrauterine environment might induce structural and functional changes that can affect neonatal health. Telomere length as an important indicator of cellular health has been associated with increased risk for disease development. Objectives This study was aimed to examine the independent and combined effects of maternal, obstetric, and foetal factors on cord blood telomere length (TL). Methods Pregnant women at the gestational age of 20th to 24th week who attended the antenatal clinic of a major local hospital in Hong Kong were recruited. Participants were asked to complete a questionnaire on demographics, health-related quality of life, and history of risk behaviors. Medical history including pregnancy complications and neonatal outcomes was obtained from electronic medical records of both mother and neonate. Umbilical cord blood was collected at delivery for TL determination. Results A total of 753 pregnant women (average age: 32.18 ± 4.51 years) were recruited. The prevalence of maternal infection, anaemia, and hypertension during pregnancy was 30.8%, 30.0%, and 6.0%, respectively. The adjusted regression model displayed that maternal infection was negatively associated with cord blood TL (β = -0.18, p = 0.026). This association became even stronger in the presence of antenatal anaemia, hypertension, delivery complications, or neonatal jaundice (β = -0.25 to -0.45). Conclusions This study consolidates evidence on the impact of adverse intrauterine environment at the cellular level. Maternal infection was significantly associated with shorter cord blood TL in a unique manner such that its presence may critically determine the susceptibility of telomere to other factors.
Collapse
|
3
|
Mou D, Ding D, Li S, Yan H, Qin B, Li Z, Zhao L, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Briens M, Wu D, Feng B. Effect of maternal organic selenium supplementation during pregnancy on sow reproductive performance and long-term effect on their progeny. J Anim Sci 2021; 98:5985967. [PMID: 33201223 DOI: 10.1093/jas/skaa366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023] Open
Abstract
Selenium (Se) is an essential trace element for animals and exists in nature in both inorganic and organic forms. Although organic Se is more bioavailable than inorganic Se, there are inconsistent reports on the effect of organic Se on the reproductive performance of sows. This study was conducted to investigate the effect of maternal organic Se (2-hydroxy-4-methylselenobutanoic [HMSeBA]) supplementation on reproductive performance and antioxidant capacity of sows, and the long-term effect on the growth performance and antioxidant capacity of their offspring with or without lipopolysaccharide (LPS) challenge. The experimental design used in this study was a completely randomized design; 45 Landrace × Yorkshire sows were randomly allocated to receive one of the following three diets during gestation: control diet (Control, basal diet, n = 15), sodium selenite (Na2SeO3)-supplemented diet (Na2SeO3, basal diet + 0.3 mg Se/kg Na2SeO3, n = 15), and HMSeBA-supplemented diet (HMSeBA, basal diet + 0.3 mg Se/kg HMSeBA, n = 15). On day 21 of age, male offspring from each group were injected with LPS or saline (n = 6). As compared with the control group, maternal HMSeBA supplementation increased the number of total born piglets, while decreased birth weight (P < 0.05). In the first week of lactation, maternal HMSeBA supplementation increased litter weight gain compared with the Na2SeO3 group (P < 0.05) and increased the average daily gain of piglets compared with the control group and Na2SeO3 group (P < 0.05). Meanwhile, maternal HMSeBA supplementation decreased piglet birth interval as compared with the control group and Na2SeO3 group (P < 0.05). Besides, plasma glutathione peroxidase (GSH-Px) activity was higher in the HMSeBA group on farrowing 0 min and 90 min, while malondialdehyde (MDA) concentration was lower on farrowing 0, 90, and 135 min than those in the control group (P < 0.05). In addition, maternal HMSeBA supplementation increased the concentration of selenoprotein P (SELENOP) in colostrum compared with the control group (P < 0.05). Further study revealed that the LPS-challenged HMSeBA group had higher GSH-Px and total antioxidant capacity and lower MDA in weaning piglets compared with the LPS-challenged control group (P < 0.05). Taken together, maternal HMSeBA supplementation increased the number of total born piglets, shortened the duration of farrowing, improved the antioxidant capacities of sows and their offspring, and improved the growth performance of suckling pigs at the first week of lactation. Thus, HMSeBA supplementation during gestation has the potentiality to produce more kilogram of meat.
Collapse
Affiliation(s)
- Daolin Mou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Dajiang Ding
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Binting Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhen Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Lianpeng Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | | | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Ginsberg Y, Gutzeit O, Hadad S, Divon MY, Khatib N, Fainaru O, Weiner Z, Beloosesky R. Maternal Progesterone Treatment Reduces Maternal Inflammation-Induced Fetal Brain Injury in a Mouse Model of Preterm Birth. Reprod Sci 2021; 28:166-176. [PMID: 32833191 DOI: 10.1007/s43032-020-00272-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Maternal natural vaginal progesterone (nVP) administration has been shown to reduce the risk of preterm birth (PTB). The largest randomized trial of nVP for PTB (OPPTIMUM) noted a sonographic reduction in neonatal brain injury following nVP treatment. We investigated the neuroinflammatory protective effect of maternal nVP in a mouse model for maternal inflammation. Pregnant mice (n = 24) were randomized to nVP (1 mg/day) or vehicle from days 13-16 of gestation. At days 15 and 16, lipopolysaccharide (30 μg) or saline were administered. Mice were sacrificed 4 h following the last injection. Fetal brains and placentas were collected. Levels of NF-κB, nNOS, IL-6, and TNFα were determined by Western blot. Maternal lipopolysaccharide significantly increased fetal brain levels of IL-6 (0.33 ± 0.02 vs. 0.11 ± 0.01 u), TNFα (0.3 ± 0.02 vs. 0.10 ± 0.01 u), NF-κB (0.32 ± 0.01 vs. 0.17 ± 0.01 u), and nNOS (0.24 ± 0.04 vs. 0.08 ± 0.01 u), and reduced the total glutathione levels (0.014 ± 0.001 vs. 0.026 ± 0.001 pmol/μl; p < 0.01) compared with control. Maternal nVP significantly reduced fetal brain levels of IL-6 (0.14 ± 0.01 vs. 0.33 ± 0.02 u), TNFα (0.2 ± 0.06 vs. 0.3 ± 0.02 u), NF-κB (0.16 ± 0.01 vs 0.32 ± 0.01 u), and nNOS (0.14 ± 0.01 vs 0.24 ± 0.04 u), and prevented the reduction of fetal brain total glutathione levels (0.022 ± 0.001 vs. 0.014 ± 0.001 pmol/μl; p < 0.01) to levels similar to controls. A similar pattern was demonstrated in the placenta. Maternal nVP for PTB may protect the fetal brain from inflammation-induced brain injury by inhibiting specific inflammatory and oxidative pathways in both brain and placenta.
Collapse
Affiliation(s)
- Yuval Ginsberg
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel.
| | - Ola Gutzeit
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Salim Hadad
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Michael Y Divon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Lenox Hill Hospital, Northwell Health, New York City, NY, USA
| | - Nizar Khatib
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Ofer Fainaru
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| |
Collapse
|
5
|
Rodrigues Helmo F, Etchebehere RM, Bernardes N, Meirelles MF, Galvão Petrini C, Penna Rocha L, Gonçalves Dos Reis Monteiro ML, Souza de Oliveira Guimarães C, de Paula Antunes Teixeira V, Dos Reis MA, Machado JR, Miranda Corrêa RR. Melatonin treatment in fetal and neonatal diseases. Pathol Res Pract 2018; 214:1940-1951. [PMID: 30377024 DOI: 10.1016/j.prp.2018.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/19/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023]
Abstract
This literature review aims to address the main scientific findings on oxidative stress activity in different gestational disorders, as well as the function and application of melatonin in the treatment of fetal and neonatal changes. Oxidative stress has been associated with the etiopathogenesis of recurrent miscarriages, preeclampsia, intrauterine growth restriction, and stillbirth. Both, the exacerbated consumption of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, and the increased synthesis of reactive oxygen species, such as superoxide, peroxynitrite, and hydrogen peroxide, induce phospholipid peroxidation and endothelial dysfunction, impaired invasion and death of trophoblast cells, impaired decidualization, and remodeling of maternal spiral arteries. It has been postulated that melatonin induces specific biochemical responses that regulate cell proliferation in fetuses, and that its antioxidant action promotes bioavailability of nitric oxide and, thus, placental perfusion and also fetal nutrition and oxygenation. Therefore, the therapeutic action of melatonin has been the subject of major studies that aim to minimize or prevent different injuries affecting this pediatric age group, such as intrauterine growth restriction, encephalopathy, chronic lung diseases, retinopathy of prematurity Conclusion: the results antioxidant and indicate that melatonin is an important therapy for the clinical treatment of these diseases.
Collapse
Affiliation(s)
- Fernanda Rodrigues Helmo
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Renata Margarida Etchebehere
- Surgical Pathology Service, Clinical Hospital, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Natália Bernardes
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria Flávia Meirelles
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Caetano Galvão Petrini
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laura Penna Rocha
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | | | - Vicente de Paula Antunes Teixeira
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marlene Antônia Dos Reis
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
7
|
Maternal pomegranate juice attenuates maternal inflammation-induced fetal brain injury by inhibition of apoptosis, neuronal nitric oxide synthase, and NF-κB in a rat model. Am J Obstet Gynecol 2018; 219:113.e1-113.e9. [PMID: 29709511 DOI: 10.1016/j.ajog.2018.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Maternal inflammation is a risk factor for neonatal brain injury and future neurological deficits. Pomegranates have been shown to exhibit anti-inflammatory, anti-apoptotic and anti-oxidant activities. OBJECTIVE We hypothesized that pomegranate juice (POM) may attenuate fetal brain injury in a rat model of maternal inflammation. STUDY DESIGN Pregnant rats (24 total) were randomized for intraperitoneal lipopolysaccharide (100 μg/kg) or saline at time 0 at 18 days of gestation. From day 11 of gestation, 12 dams were provided ad libitum access to drinking water, and 12 dams were provided ad libitum access to drinking water with pomegranate juice (5 mL per day), resulting in 4 groups of 6 dams (saline/saline, pomegranate juice/saline, saline/lipopolysaccharide, pomegranate juice/lipopolysaccharide). All dams were sacrificed 4 hours following the injection and maternal blood and fetal brains were collected from the 4 treatment groups. Maternal interleukin-6 serum levels and fetal brain caspase 3 active form, nuclear factor-κB p65, neuronal nitric oxide synthase (phosphoneuronal nitric oxide synthase), and proinflammatory cytokine levels were determined by enzyme-linked immunosorbent assay and Western blot. RESULTS Maternal lipopolysaccharide significantly increased maternal serum interleukin-6 levels (6039 ± 1039 vs 66 ± 46 pg/mL; P < .05) and fetal brain caspase 3 active form, nuclear factor-κB p65, phosphoneuronal nitric oxide synthase, and the proinflammatory cytokines compared to the control group (caspase 3 active form 0.26 ± 0.01 vs 0.20 ± 0.01 U; nuclear factor-κB p65 0.24 ± 0.01 vs 0.1 ± 0.01 U; phosphoneuronal nitric oxide synthase 0.23 ± 0.01 vs 0.11 ± 0.01 U; interleukin-6 0.25 ± 0.01 vs 0.09 ± 0.01 U; tumor necrosis factor-α 0.26 ± 0.01 vs 0.12 ± 0.01 U; chemokine (C-C motif) ligand 2 0.23 ± 0.01 vs 0.1 ± 0.01 U). Maternal supplementation of pomegranate juice to lipopolysaccharide-exposed dams (pomegranate juice/lipopolysaccharide) significantly reduced maternal serum interleukin-6 levels (3059 ± 1121 pg/mL, fetal brain: caspase 3 active form (0.2 ± 0.01 U), nuclear factor-κB p65 (0.22 ± 0.01 U), phosphoneuronal nitric oxide synthase (0.19 ± 0.01 U) as well as the brain proinflammatory cytokines (interleukin-6, tumor necrosis factor-α and chemokine [C-C motif] ligand 2) compared to lipopolysaccharide group. CONCLUSION Maternal pomegranate juice supplementation may attenuate maternal inflammation-induced fetal brain injury. Pomegranate juice neuroprotective effects might be secondary to the suppression of both the maternal inflammatory response and inhibition of fetal brain apoptosis, neuronal nitric oxide synthase, and nuclear factor-κB activation.
Collapse
|
8
|
Shalom-Paz E, Weill S, Ginzberg Y, Khatib N, Anabusi S, Klorin G, Sabo E, Beloosesky R. IUGR induced by maternal chronic inflammation: long-term effect on offspring's ovaries in rat model-a preliminary report. J Endocrinol Invest 2017; 40:1125-1131. [PMID: 28478547 DOI: 10.1007/s40618-017-0681-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/26/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Excess maternal inflammation and oxidative stress while in utero have been known to affect gross fetal development. However, an association between the inflammatory process in utero and the effects on ovarian development and future fertility has not yet been demonstrated. This study focused on LPS-induced chronic inflammation in early pregnancy and its effect on ovarian development and reserves of the offspring, using a rat model. Our aim was to determine whether maternal inflammation in utero disturbs reproductive system development in the offspring, given that maternal inflammation and oxidative stress has been shown to affect gross fetal development. METHODS Prospective case control rat model. Sprague-Dawley pregnant rats (n = 11) received intraperitoneal lipopolysaccharide (LPS group) (50 µg/kg bodyweight) or saline solution (control group) on day 14, 16, and 18 of gestation. Pups were delivered spontaneously. At 3 months, female offspring were weighed and killed. Ovaries were harvested for (1) follicle count using hematoxylin and eosin staining, (2) apoptosis: ovaries were stained for caspase, and (3) serum CRP and AMH levels were determined. RESULTS Birth weights of pups were significantly lower in the LPS group compared to the control group (6.0 ± 0.6 vs. 6.6 ± 0.4 gr; P = 0.0003). The LPS group had fewer preantral follicles, and increased intensity of Caspase 3 staining (510 vs. 155.5 u; P = 0.007). AMH levels were significantly lower in the LPS group (4.15 ± 0.46 vs 6.08 ± 1.88 ng/ml; P = 0.016). There was no significant difference in the CRP and MCP-1 levels between the two groups. CONCLUSIONS Chronic maternal inflammation induced intrauterine growth restriction in offspring and a decrease in the proportion of follicles. This change might be due to premature apoptosis. These preliminary results suggest that maternal inflammation has a detrimental effect on the development of the female reproductive system of the offspring and thus, future fertility.
Collapse
Affiliation(s)
- Einat Shalom-Paz
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera, Israel.
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel.
| | - Sabrina Weill
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Ginzberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| | - Saja Anabusi
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| | - Geula Klorin
- Department of Pathology, Rambam Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport School of Medicine, The Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Ginsberg Y, Khatib N, Weiner Z, Beloosesky R. Maternal Inflammation, Fetal Brain Implications and Suggested Neuroprotection: A Summary of 10 Years of Research in Animal Models. Rambam Maimonides Med J 2017; 8:RMMJ.10305. [PMID: 28467756 PMCID: PMC5415374 DOI: 10.5041/rmmj.10305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence implies that maternal inflammation during pregnancy is associated with increased risk of neurodevelopmental disorders in the offspring. The pathophysiological mechanisms by which maternal inflammation evokes fetal brain injury and contributes to long-term adverse neurological outcomes are not completely understood. In this review, we summarize 10 years of our research experience on maternal inflammation and the implications upon the fetal/offspring brain. We review our findings regarding the underlying mechanisms that connects maternal inflammation and fetal brain injuries (e.g. cytokines, oxidative stress); we discuss our imaging, pathological and behavioral test results which support brain damage following maternal inflammation; and finally we describe some of the therapeutic strategies which might prevent the damage.
Collapse
Affiliation(s)
- Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Al-Amin MM, Alam T, Hasan SMN, Hasan AT, Quddus AHMR. Prenatal maternal lipopolysaccharide administration leads to age- and region-specific oxidative stress in the early developmental stage in offspring. Neuroscience 2016; 318:84-93. [PMID: 26774051 DOI: 10.1016/j.neuroscience.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/21/2023]
Abstract
Prenatal exposure to lipopolysaccharide (LPS) has been exploited to simulate brain disorder in animal model. Prenatal LPS-exposure has shown elevated levels of pro-inflammatory cytokines in the early stages of the postnatal period. This study determines the effect of prenatal LPS-exposure on oxidative stress (OS) in the distinct brain regions in the early postnatal stages. LPS (50 μg/kg, i.p.) and water for injection (100 μl, i.p.) were given to the experimental (n=5) and control (n=5) group of pregnant Swiss albino mice respectively on gestational day (GD)-16 and 17. Animals were decapitated on postnatal day (PnD) - 1, 7, 14 and 21 to assay levels of oxidative markers from 6 distinct brain regions. When compared with the control, prenatal LPS-exposure alters levels of OS markers: (i) on PnD-1, glutathione (GSH) level is raised and superoxide dismutase (SOD) activity is dropped, (ii) on PnD-7, advanced oxidation of protein product (AOPP) level is elevated, (iii) on PnD-14, lipid peroxidation (MDA) and activity of catalase (CAT) are enhanced, (iv) on PnD-21, increased MDA continued. The hippocampus (HC) and cerebellum (CB) were mostly susceptible to OS in the early postnatal development. Levels of MDA and activity of CAT enzyme were increased on PnD-14 in the cortex, HC and CB. Except MDA, all OS markers recovered and returned to the level of control animals on PnD-21. Taken together, these results suggest that prenatal LPS-exposure induces age- and region-specific OS in the early postnatal stage.
Collapse
Affiliation(s)
- M M Al-Amin
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh; The Queensland Brain Institute, The University of Queensland, QBI Building 79, St Lucia, QLD 4072, Australia.
| | - T Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - S M N Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - A T Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | | |
Collapse
|
11
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Wang X, Wang J, Luo H, Chen C, Pei F, Cai Y, Yang X, Wang N, Fu J, Xu Z, Zhou L, Zeng C. Prenatal lipopolysaccharide exposure causes mesenteric vascular dysfunction through the nitric oxide and cyclic guanosine monophosphate pathway in offspring. Free Radic Biol Med 2015; 86:322-30. [PMID: 26073126 DOI: 10.1016/j.freeradbiomed.2015.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/03/2015] [Accepted: 05/26/2015] [Indexed: 01/21/2023]
Abstract
Cardiovascular diseases, such as hypertension, could be programmed in fetal life. Prenatal lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in offspring, but the vascular mechanisms involved are unclear. Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (0.79mg/kg) or saline (0.5ml) on gestation days 8, 10, and 12. The offspring of LPS-treated dams had higher blood pressure and decreased acetylcholine (ACh)-induced relaxation and increased phenylephrine (PE)-induced contraction in endothelium-intact mesenteric arteries. Endothelium removal significantly enhanced the PE-induced contraction in offspring of control but not LPS-treated dams. The arteries pretreated with l-NAME to inhibit nitric oxide synthase (eNOS) in the endothelium or ODQ to inhibit cGMP production in the vascular smooth muscle had attenuated ACh-induced relaxation but augmented PE-induced contraction to a larger extent in arteries from offspring of control than those from LPS-treated dams. In addition, the endothelium-independent relaxation caused by sodium nitroprusside was also decreased in arteries from offspring of LPS-treated dams. The functional results were accompanied by a reduction in the expressions of eNOS and soluble guanylate cyclase (sGC) and production of NO and cGMP in arteries from offspring of LPS-treated dams. Furthermore, LPS-treated dam's offspring arteries had increased oxidative stress and decreased antioxidant capacity. Three-week treatment with TEMPOL, a reactive oxygen species (ROS) scavenger, normalized the alterations in the levels of ROS, eNOS, and sGC, as well as in the production of NO and cGMP and vascular function in the arteries of the offspring of LPS-treated dams. In conclusion, prenatal LPS exposure programs vascular dysfunction of mesenteric arteries through increased oxidative stress and impaired NO-cGMP signaling pathway.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Fang Pei
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yue Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Xiaoli Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Zaichen Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| |
Collapse
|