1
|
Cui J, Huang N, Fan G, Pan T, Han K, Jiang C, Liu X, Wang F, Ma L, Le Q. Paternal cocaine-seeking motivation defines offspring's vulnerability to addiction by down-regulating GABAergic GABRG3 in the ventral tegmental area. Transl Psychiatry 2024; 14:107. [PMID: 38388464 PMCID: PMC10884401 DOI: 10.1038/s41398-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.
Collapse
Affiliation(s)
- Jian Cui
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Nan Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kunxiu Han
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| |
Collapse
|
2
|
Marceau K. The role of parenting in developmental trajectories of risk for adolescent substance use: a bioecological systems cascade model. Front Psychol 2023; 14:1277419. [PMID: 38054168 PMCID: PMC10694242 DOI: 10.3389/fpsyg.2023.1277419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023] Open
Abstract
Parenting is a key influence and prevention target for adolescent substance use, and changes dramatically in form and function during adolescence. This theoretical synthesis reviews evidence of associations of substance use-specific parenting behaviors, dimensions, and styles with adolescent substance use, and integrates key developmental and family theories (e.g., bioecological, dynamical systems, family systems, developmental cascades) and methodological-conceptual advances to illustrate the complex role that parenting plays for the development of adolescent substance use in combination with child and contextual influences. The resulting bioecological systems cascade model centers the dynamic co-development of parenting and child influences in developmental cascades that lead to more or less risk for adolescent substance use. These trajectories are initiated by intergenerational influences, including genetics, parents' familial environments, and child-parent attachment. Culture and context influences are a holistic backdrop shaping parent-adolescent trajectories. Parenting is influences are conceptualized as a complex process by which specific parenting behaviors are informed by and accumulate into parenting dimensions which together comprise general parenting styles and are informed by the broader family context. The co-development of parenting and child biobehavioral risk is shaped by both parents and children, including by the genetics and environments they do and do not share. This co-development is dynamic, and developmental transitions of individuals and the family lead to periods of increased lability or variability that can change the longer-term trajectories of children's risk for substance use. Methodological avenues for future studies to operationalize the model are discussed.
Collapse
Affiliation(s)
- Kristine Marceau
- Department of Human Development and Family Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Bailey LS, Bagley JR, Wherry JD, Chesler EJ, Karkhanis A, Jentsch JD, Tarantino LM. Repeated dosing with cocaine produces strain-dependent effects on responding for conditioned reinforcement in Collaborative Cross mice. Psychopharmacology (Berl) 2023; 240:561-573. [PMID: 36239767 PMCID: PMC10083021 DOI: 10.1007/s00213-022-06256-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Cocaine use disorder (CUD) is a highly heritable form of substance use disorder, with genetic variation accounting for a substantial proportion of the risk for transitioning from recreational use to a clinically impairing addiction. With repeated exposures to cocaine, psychomotor and incentive sensitization are observed in rodents. These phenomena are thought to model behavioral changes elicited by the drug that contribute to the progression into addiction, but little is known about how genetic variation may moderate these consequences. OBJECTIVES Here, we describe the use of two Collaborative Cross (CC) recombinant inbred mouse strains that either exhibit high (CC018/UncJ) or no (CC027/GeniUncJ) psychomotor sensitization in response to cocaine to measure phenotypes related to incentive sensitization after repeated cocaine exposures; given the relationship of incentive motivation to nucleus accumbens core (NAc) dopamine release and reuptake, we also assessed these neurochemical mechanisms. METHODS Adult male and female CC018/UncJ and CC027/GeniUncJ mice underwent Pavlovian conditioning to associate a visual cue with presentation of a palatable food reward, then received five, every-other-day injections of cocaine or vehicle. Following Pavlovian re-training, they underwent testing acquisition of a new operant response for the visual cue, now serving as a conditioned reinforcer. Subsequently, electrically evoked dopamine release was assessed using fast-scan cyclic voltammetry from acute brain slices containing the NAc. RESULTS While both strains acquired the Pavlovian association, only CC018/UncJ mice showed conditioned reinforcement and incentive sensitization in response to cocaine, while CC027/GeniUncJ mice did not. Voltammetry data revealed that CC018/UncJ, compared to CC027/GeniUnc, mice exhibited higher baseline dopamine release and uptake. Moreover, chronic cocaine exposure blunted tonic and phasic dopamine release in CC018/UncJ, but not CC027/GeniUncJ, mice. CONCLUSIONS Genetic background is a moderator of cocaine-induced neuroadaptations in mesolimbic dopamine signaling, which may contribute to both psychomotor and incentive sensitization and indicate a shared biological mechanism of variation.
Collapse
Affiliation(s)
- Lauren S Bailey
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | - Jared R Bagley
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | - James D Wherry
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | | | - Anushree Karkhanis
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | - James D Jentsch
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA.
- The Jackson Laboratory, Bar Harbor, ME, USA.
| | - Lisa M Tarantino
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Verweij KJH, Vink JM, Abdellaoui A, Gillespie NA, Derks EM, Treur JL. The genetic aetiology of cannabis use: from twin models to genome-wide association studies and beyond. Transl Psychiatry 2022; 12:489. [PMID: 36411281 PMCID: PMC9678872 DOI: 10.1038/s41398-022-02215-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use, covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end our review by discussing implications of these findings and suggestions for future work.
Collapse
Affiliation(s)
- Karin J. H. Verweij
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- grid.5590.90000000122931605Behavioural Science Institute, Radboud University Nijmegen, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Nathan A. Gillespie
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 East Leigh St, Suite 100, Richmond, VA 23219 USA
| | - Eske M. Derks
- grid.1049.c0000 0001 2294 1395Translational Neurogenomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
| | - Jorien L. Treur
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Popescu A, Marian M, Drăgoi AM, Costea RV. Understanding the genetics and neurobiological pathways behind addiction (Review). Exp Ther Med 2021; 21:544. [PMID: 33815617 PMCID: PMC8014976 DOI: 10.3892/etm.2021.9976] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
The hypothesis issued by modern medicine states that many diseases known to humans are genetically determined, influenced or not by environmental factors, which is applicable to most psychiatric disorders as well. This article focuses on two pending questions regarding addiction: Why do some individuals become addicted while others do not? along with Is it a learned behavior or is it genetically predefined? Recent data suggest that addiction is more than repeated exposure, it is the synchronicity between intrinsic factors (genotype, sex, age, preexisting addictive disorder, or other mental illness), extrinsic factors (childhood, level of education, socioeconomic status, social support, entourage, drug availability) and the nature of the addictive agent (pharmacokinetics, path of administration, psychoactive properties). The dopamine-mesolimbic motivation-reward-reinforcement cycle remains the most coherent physiological theory in addiction. While the common property of addictive substances is that they are dopamine-agonists, each class has individual mechanisms, pharmacokinetics and psychoactive potentials.
Collapse
Affiliation(s)
- Alexandra Popescu
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Maria Marian
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Ana Miruna Drăgoi
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Radu-Virgil Costea
- Department of General Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
6
|
Goodhines PA, Taylor LE, Zaso MJ, Antshel KM, Park A. Prescription Stimulant Misuse and Risk Correlates among Racially-Diverse Urban Adolescents. Subst Use Misuse 2020; 55:2258-2267. [PMID: 32749179 PMCID: PMC7665830 DOI: 10.1080/10826084.2020.1800740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Most research on prescription stimulant misuse has focused on college students, and research on high school-aged adolescents is limited. OBJECTIVES This study aimed to characterize risk correlates of prescription stimulant misuse among a racially-diverse and socioeconomically-disadvantaged sample of urban adolescents. METHOD Cross-sectional data were drawn from an ongoing study of adolescent health behaviors, Project Teen. Participants were 414 9th to 11th graders (Mage=16.00 [SD = 1.08]; 57% female; 41% Black or African American, 22% White, 18% Asian, 17% Multiracial, 2% Pacific Islander, and 1% Native American; 12% Hispanic/Latinx). Participants completed a web-based survey assessing prescription stimulant misuse, demographics, mental health and personality, social environment, and substance use. RESULTS Eight percent of participants endorsed past-year prescription stimulant misuse. Compared to non-misusing peers, participants endorsing past-year prescription stimulant misuse reported greater depression/anxiety symptoms, sensation seeking, perceived peer risk behavior, and alcohol and cigarette use, as well as a lower level of parental monitoring; null group differences were observed for academic goal orientation, perceived peer approval of risk behavior, and cannabis use. Binary logistic regression demonstrated that binge drinking and cigarette use were significantly associated with prescription stimulant misuse over and above all other identified risk variables. CONCLUSIONS Adolescent prescription stimulant misuse appears to overlap with general adolescent substance use, sharing several known risk correlates. Results highlight potential targets for identification of emerging prescription stimulant misuse risk profiles at earlier stages of development. Longitudinal replication is needed to examine directional associations and risk mechanisms underlying adolescent prescription stimulant misuse.
Collapse
Affiliation(s)
| | - Lea E Taylor
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| | - Michelle J Zaso
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, New York, USA
| | - Kevin M Antshel
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| | - Aesoon Park
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
7
|
Gerra MC, Manfredini M, Cortese E, Antonioni MC, Leonardi C, Magnelli F, Somaini L, Jayanthi S, Cadet JL, Donnini C. Genetic and Environmental Risk Factors for Cannabis Use: Preliminary Results for the Role of Parental Care Perception. Subst Use Misuse 2019; 54:670-680. [PMID: 30663487 PMCID: PMC7643561 DOI: 10.1080/10826084.2018.1531430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vulnerability to cannabis use (CU) initiation and problematic use have been shown to be affected by both genetic and environmental factors, with still inconclusive and uncertain evidence. OBJECTIVE Aim of the present study was to investigate the possible interplay between gene polymorphisms and psychosocial conditions in CU susceptibility. METHODS Ninety-two cannabis users and ninety-three controls have been included in the study. Exclusion criteria were serious mental health disorders and severe somatic disorders, use of other drugs and alcohol abuse; control subjects were not screened to remove Reward Deficiency Syndrome (RDS) behaviors. A candidate gene association study was performed, including variants related to dopaminergic and endocannabinoids pathways. Adverse childhood experiences and quality of parental care have been retrospectively explored utilizing ACES (Adverse Children Experience Scale), CECA-q (Child Experience of Care and Abuse Questionnaire), PBI (Parental Bonding Instrument). RESULTS Our findings evidenced a significant association between rs1800497 Taq1A of ANKK1 gene and CU. Parental care was found to be protective factor, with emotional and physical neglect specifically influencing CU. Gender also played a role in CU, with males smoking more than females. However, when tested together genotypes and psychosocial variables, the significance of observed genetic differences disappeared. CONCLUSIONS Our results confirm a significant role of Taq1A polymorphism in CU vulnerability. A primary role of environmental factors in mediating genetic risk has been highlighted: parental care could be considered the main target to design early prevention programs and strategies.
Collapse
Affiliation(s)
- Maria Carla Gerra
- a Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parma , Italy
| | - Matteo Manfredini
- a Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parma , Italy
| | - Elena Cortese
- b Addiction Treatment Center, Local Health Service , Rome , Italy
| | | | - Claudio Leonardi
- b Addiction Treatment Center, Local Health Service , Rome , Italy
| | - Fernanda Magnelli
- d Addiction Treatment Centre, Local Health Service , Cosenza , Biella , Italy
| | - Lorenzo Somaini
- d Addiction Treatment Centre, Local Health Service , Cosenza , Biella , Italy
| | - Subramaniam Jayanthi
- e Molecular Neuropsychiatry Research Branch , NIDA Intramural Research Program , Baltimore , Maryland , USA
| | - Jean Lud Cadet
- e Molecular Neuropsychiatry Research Branch , NIDA Intramural Research Program , Baltimore , Maryland , USA
| | - Claudia Donnini
- a Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parma , Italy
| |
Collapse
|
8
|
Pierce RC, Fant B, Swinford-Jackson SE, Heller EA, Berrettini WH, Wimmer ME. Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology 2018; 43:1471-1480. [PMID: 29453446 PMCID: PMC5983541 DOI: 10.1038/s41386-018-0008-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
Abstract
Decades of research on cocaine has produced volumes of data that have answered many important questions about the nature of this highly addictive drug. Sadly, none of this information has translated into the development of effective therapies for the treatment of cocaine addiction. This review endeavors to assess the current state of cocaine research in an attempt to identify novel pathways for therapeutic development. For example, risk of cocaine addiction is highly heritable but genome-wide analyses comparing cocaine-dependent individuals to controls have not resulted in promising targets for drug development. Is this because the genetics of addiction is too complex or because the existing research methodologies are inadequate? Likewise, animal studies have revealed dozens of enduring changes in gene expression following prolonged exposure to cocaine, none of which have translated into therapeutics either because the resulting compounds were ineffective or produced intolerable side-effects. Recently, attention has focused on epigenetic modifications resulting from repeated cocaine intake, some of which appear to be heritable through changes in the germline. While epigenetic changes represent new vistas for therapeutic development, selective manipulation of epigenetic marks is currently challenging even in animals such that translational potential is a distant prospect. This review will reveal that despite the enormous progress made in understanding the molecular and physiological bases of cocaine addiction, there is much that remains a mystery. Continued advances in genetics and molecular biology hold potential for revealing multiple pathways toward the development of treatments for the continuing scourge of cocaine addiction.
Collapse
Affiliation(s)
- R. Christopher Pierce
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruno Fant
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah E. Swinford-Jackson
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Elizabeth A. Heller
- 0000 0004 1936 8972grid.25879.31Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Wade H. Berrettini
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mathieu E. Wimmer
- 0000 0001 2248 3398grid.264727.2Department of Psychology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|