1
|
Recent technical and biological development in the analysis of biomarker N-deoxyguanosine-C8-4-aminobiphenyl. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1087-1088:49-60. [PMID: 29709872 DOI: 10.1016/j.jchromb.2018.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
4-Aminobiphenyl (4-ABP) which is primarily formed during tobacco combustion and overheated meat is a major carcinogen responsible for various cancers. Its adducted form, N-deoxyguanosine-C8-4-aminobiphenyl (dG-C8-4-ABP), has long been employed as a biomarker for assessment of the risk for cancer. In this review, the metabolism and carcinogenisity of 4-ABP will be discussed, followed by a discussion of the current common approaches of analyzing dG-C8-4-ABP. The major part of this review will be on the history and recent development of key methods for detection and quantitation of dG-C8-4-ABP in complex biological samples and their biological applications, from the traditional 2P-postlabelling and immunoassay methods to modern liquid chromatography-mass spectrometry (LC-MS) with the latter as the focus. Many vital biological discoveries based on dG-C8-4-ABP have been published by using the nanoLC-MS with column switching platform in our laboratory, which has also been adopted and further improved by many other researchers. We hope this review can provide a perspective of the challenges that had to be addressed in reaching our present goals and possibly bring new ideas for those who are still working on the frontline of DNA adducts area.
Collapse
|
2
|
Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases. Anal Bioanal Chem 2015; 408:953-61. [DOI: 10.1007/s00216-015-9186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
|
3
|
Stavros KM, Hawkins EK, Rizzo CJ, Stone MP. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N(2)-dG DNA Adduct Positioned at the Nonreiterated G(1) in the NarI Restriction Site. Chem Res Toxicol 2015; 28:1455-68. [PMID: 26083477 PMCID: PMC4511292 DOI: 10.1021/acs.chemrestox.5b00140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The
conformation of an N2-dG adduct
arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined
in 5′-d(C1T2C3X4G5C6G7C8C9A10T11C12)-3′:5′-d(G13A14T15G16G17C18G19C20C21G22A23G24)-3′; X = N2-dG-IQ, in which the modified nucleotide X4 corresponds to G1 in the 5′-d(G1G2CG3CC)-3′ NarI restriction endonuclease site. Circular dichroism (CD) revealed
blue shifts relative to the unmodified duplex, consistent with adduct-induced
twisting, and a hypochromic effect for the IQ absorbance in the near
UV region. NMR revealed that the N2-dG-IQ
adduct adopted a base-displaced intercalated conformation in which
the modified guanine remained in the anti conformation
about the glycosidic bond, the IQ moiety intercalated into the duplex,
and the complementary base C21 was displaced into the major
groove. The processing of the N2-dG-IQ
lesion by hpol η is sequence-dependent; when placed at the reiterated
G3 position, but not at the G1 position, this
lesion exhibits a propensity for frameshift replication [Choi, J.
Y., et al. (2006) J. Biol. Chem., 281, 25297–25306]. The structure of the N2-dG-IQ adduct at the nonreiterated G1 position
was compared to that of the same adduct placed at the G3 position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450–3463]. CD indicted minimal spectral
differences between the G1 vs G3N2-dG-IQ adducts. NMR indicated that the N2-dG-IQ adduct exhibited similar base-displaced intercalated
conformations at both the G1 and G3 positions.
This result differed as compared to the corresponding C8-dG-IQ adducts
placed at the same positions. The C8-dG-IQ adduct adopted a minor
groove conformation when placed at position G1 but a base-displaced
intercalated conformation when placed at position G3 in
the NarI sequence. The present studies suggest that
differences in lesion bypass by hpol η may be mediated by differences
in the 3′-flanking sequences, perhaps modulating the ability
to accommodate transient strand slippage intermediates.
Collapse
Affiliation(s)
- Kallie M Stavros
- †Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | | | - Carmelo J Rizzo
- †Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Michael P Stone
- †Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| |
Collapse
|
4
|
Stavros KM, Hawkins EK, Rizzo CJ, Stone MP. Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence. Nucleic Acids Res 2014; 42:3450-63. [PMID: 24366876 PMCID: PMC3950664 DOI: 10.1093/nar/gkt1109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5'- and 3'-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a 'base-displaced intercalated' conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson-Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.
Collapse
Affiliation(s)
| | | | | | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235-1822, USA
| |
Collapse
|
5
|
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
6
|
Klaene JJ, Sharma VK, Glick J, Vouros P. The analysis of DNA adducts: the transition from (32)P-postlabeling to mass spectrometry. Cancer Lett 2012; 334:10-9. [PMID: 22960573 DOI: 10.1016/j.canlet.2012.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/20/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
The technique of (32)P-postlabeling, which was introduced in 1982 for the analysis of DNA adducts, has long been the method of choice for in vivo studies because of its high sensitivity as it requires only <10μg DNA to achieve the detection of 1 adduct in 10(10) normal bases. (32)P-postlabeling has therefore been utilized in numerous human and animal studies of DNA adduct formation. Like all techniques (32)P-postlabeling does have several disadvantages including the use of radioactive phosphorus, lack of internal standards, and perhaps most significantly does not provide any structural information for positive identification of unknown adducts, a shortcoming that could significantly hamper progress in the field. Structural methods have since been developed to allow for positive identification of DNA adducts, but to this day, the same level of sensitivity and low sample requirements provided by (32)P-postlabeling have not been matched. In this mini review we will discuss the (32)P-postlabeling method and chronicle the transition to mass spectrometry via the hyphenation of gas chromatography, capillary electrophoresis, and ultimately liquid chromatography which, some 30years later, is only just starting to approach the sensitivity and low sample requirements of (32)P-postlabeling. This paper focuses on the detection of bulky carcinogen-DNA adducts, with no mention of oxidative damage or small alkylating agents. This is because the (32)P-postlabeling assay is most compatible with bulky DNA adducts. This will also allow a more comprehensive focus on a subject that has been our particular interest since 1990.
Collapse
Affiliation(s)
- Joshua J Klaene
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA 02115, United States
| | - Vaneet K Sharma
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA 02115, United States
| | - James Glick
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA 02115, United States
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
7
|
Hvastkovs EG, Schenkman JB, Rusling JF. Metabolic toxicity screening using electrochemiluminescence arrays coupled with enzyme-DNA biocolloid reactors and liquid chromatography-mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:79-105. [PMID: 22482786 PMCID: PMC3399491 DOI: 10.1146/annurev.anchem.111808.073659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.
Collapse
Affiliation(s)
- Eli G. Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858;
| | - John B. Schenkman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
| | - James F. Rusling
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|
8
|
Zhao L, Schenkman JB, Rusling JF. High-throughput metabolic toxicity screening using magnetic biocolloid reactors and LC-MS/MS. Anal Chem 2010; 82:10172-8. [PMID: 21090635 DOI: 10.1021/ac102317a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An inexpensive, high-throughput genotoxicity screening method was developed by using magnetic particles coated with cytosol/microsome/DNA films as biocolloid reactors in a 96-well plate format coupled with liquid chromatography-mass spectrometry. Incorporation of both microsomal and cytosolic enzymes in the films provides a broad spectrum of metabolic enzymes representing a range of metabolic pathways for bioactivation of chemicals. Reactive metabolites generated via this process are trapped by covalently binding to DNA in the film. The DNA is then hydrolyzed and nucleobase adducts are collected using filters in the bottom for the 96-well plate of analysis by capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS). The magnetic particles facilitate simple and rapid sample preparation and workup. Major DNA adducts from ethylene dibromide, N-acetyl-2-aminofluorene and styrene were identified in proof-of-concept studies. Relative formation rates of DNA adducts correlated well with rodent genotoxicity metric TD(50) for the three compounds. This method has the potential for high-throughput genotoxicity screening, providing chemical structure information that is complementary to toxicity bioassays.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | | | | |
Collapse
|
9
|
Inhibition by acetaminophen of neoplastic initiation elicited in rat liver by the DNA-reactive hepatocarcinogen N-acetyl-2-aminofluorene. Eur J Cancer Prev 2008; 16:528-34. [PMID: 18090125 DOI: 10.1097/01.cej.0000243854.12728.b8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acetaminophen, a monocyclic phenolic compound and analgesic, when fed at 8900 p.p.m. in the diet, was reported to inhibit the hepatocarcinogenicity in rats of the aromatic amine proximate carcinogen N-hydroxy-N-acetyl-2-aminofluorene. To elucidate the mechanism(s) of this anticarcinogenicity, the present study examined whether acetaminophen at lower doses has the ability to inhibit the initiating effects in the rat liver of the precursor hepatocarcinogen N-acetyl-2-aminofluorene. Male F344 rats were allocated to six groups, which were maintained under reverse light cycle conditions to assure acetaminophen ingestion at the time of N-acetyl-2-aminofluorene administration during the dark phase, which was imposed from 07.00 to 19.00 h. Group 1 served as vehicle control (0.5% carboxymethylcellulose) for N-acetyl-2-aminofluorene, which was administered intragastrically 3 days per week at 2.6 mg/kg for 8 weeks (group 4) to achieve initiation. Acetaminophen was given in the diet either alone at 2400 or 4800 p.p.m. for 9 weeks (groups 2 and 3), or with N-acetyl-2-aminofluorene (groups 5 and 6), starting 1 week before N-acetyl-2-aminofluorene administration. Acetaminophen blood levels were about 1 and 4 microg/ml at the two dietary concentrations. N-acetyl-2-aminofluorene induced hepatocellular preneoplastic lesions measured as hepatocellular altered foci expressing glutathione S-transferase-P, reflecting initiation. Induced foci were reduced with administration of both concentrations of acetaminophen. Acetaminophen by itself produced no DNA adducts nor did it alter the high formation of N-acetyl-2-aminofluorene-DNA adducts, about 200 in 10 nucleotides, measured by nucleotide postlabeling. Acetaminophen did not affect background liver cell proliferation, but significantly reduced N-acetyl-2-aminofluorene-induced increased proliferation measured by proliferating cell nuclear antigen immunostaining. Thus, acetaminophen effectively protected hepatocytes from the initiating effects of N-acetyl-2-aminofluorene, possibly through a cytoprotective effect resulting from slowing the rate of induced cell turnover.
Collapse
|
10
|
Wang F, Elmquist CE, Stover JS, Rizzo CJ, Stone MP. DNA sequence modulates the conformation of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme. Biochemistry 2007; 46:8498-516. [PMID: 17602664 PMCID: PMC2782574 DOI: 10.1021/bi700361u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The conformations of C8-dG adducts of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) positioned in the C-X1-G, G-X2-C, and C-X3-C contexts in the C-G1-G2-C-G3-C-C recognition sequence of the NarI restriction enzyme were compared, using the oligodeoxynucleotides 5'-d(CTCXGCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', 5'-d(CTCGXCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', and 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' (X is the C8-dG adduct of IQ). These were the NarIIQ1, NarIIQ2, and NarIIQ3 duplexes, respectively. In each instance, the glycosyl torsion angle chi for the IQ-modified dG was in the syn conformation. The orientations of the IQ moieties were dependent upon the conformations of torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)], which were monitored by the patterns of 1H NOEs between the IQ moieties and the DNA in the three sequence contexts. The conformational states of IQ torsion angles alpha' and beta' were predicted from the refined structures of the three adducts obtained from restrained molecular dynamics calculations, utilizing simulated annealing protocols. For the NarIIQ1 and NarIIQ2 duplexes, the alpha' torsion angles were predicted to be -176 +/- 8 degrees and -160 +/- 8 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle alpha' was predicted to be 159 +/- 7 degrees . Likewise, for the NarIIQ1 and NarIIQ2 duplexes, the beta' torsion angles were predicted to be -152 +/- 8 degrees and -164 +/- 7 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle beta' was predicted to be -23 +/- 8 degrees . Consequently, the conformations of the IQ adduct in the NarIIQ1 and NarIIQ2 duplexes were similar, with the IQ methyl protons and IQ H4 and H5 protons facing outward in the minor groove, whereas in the NarIIQ3 duplex, the IQ methyl protons and the IQ H4 and H5 protons faced into the DNA duplex, facilitating the base-displaced intercalated orientation of the IQ moiety [Wang, F., Elmquist, C. E., Stover, J. S., Rizzo, C. J., and Stone, M. P. (2006) J. Am. Chem. Soc. 128, 10085-10095]. In contrast, for the NarIIQ1 and NarIIQ2 duplexes, the IQ moiety remained in the minor groove. These sequence-dependent differences suggest that base-displaced intercalation of the IQ adduct is favored when both the 5'- and 3'-flanking nucleotides in the complementary strand are guanines. These conformational differences may correlate with sequence-dependent differences in translesion replication.
Collapse
Affiliation(s)
| | | | | | - Carmelo J. Rizzo
- To whom correspondence should be addressed. C.J.R.: telephone, (615) 322−6100; fax, (615) 343−1234; e-mail, . M.P.S.: telephone, (615) 322−2589; fax, (615) 322−7591; e-mail,
| | - Michael P. Stone
- To whom correspondence should be addressed. C.J.R.: telephone, (615) 322−6100; fax, (615) 343−1234; e-mail, . M.P.S.: telephone, (615) 322−2589; fax, (615) 322−7591; e-mail,
| |
Collapse
|
11
|
Wang F, DeMuro NE, Elmquist CE, Stover JS, Rizzo CJ, Stone MP. Base-displaced intercalated structure of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme, a hotspot for -2 bp deletions. J Am Chem Soc 2006; 128:10085-95. [PMID: 16881637 PMCID: PMC2692337 DOI: 10.1021/ja062004v] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of the oligodeoxynucleotide 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' containing the heterocyclic amine 8-[(3-methyl-3H-imidazo[4,5-f]quinolin-2-yl)amino]-2'-deoxyguanosine adduct (IQ) at the third guanine in the NarI restriction sequence, a hot spot for -2 bp frameshifts, is reported. Molecular dynamics calculations restrained by distances derived from 24 (1)H NOEs between IQ and DNA, and torsion angles derived from (3)J couplings, yielded ensembles of structures in which the adducted guanine was displaced into the major groove with its glycosyl torsion angle in the syn conformation. One proton of its exocyclic amine was approximately 2.8 A from an oxygen of the 5' phosphodiester linkage, suggesting formation of a hydrogen bond. The carcinogen-guanine linkage was defined by torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] of 159 +/- 7 degrees and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)] of -23 +/- 8 degrees . The complementary cytosine was also displaced into the major groove. This allowed IQ to intercalate between the flanking C.G base pairs. The disruption of Watson-Crick hydrogen bonding was corroborated by chemical-shift perturbations for base aromatic protons in the complementary strand opposite to the modified guanine. Chemical-shift perturbations were also observed for (31)P resonances corresponding to phosphodiester linkages flanking the adduct. The results confirmed that IQ adopted a base-displaced intercalated conformation in this sequence context but did not corroborate the formation of a hydrogen bond between the IQ quinoline nitrogen and the complementary dC [Elmquist, C. E.; Stover, J. S.; Wang, Z.; Rizzo, C. J. J. Am. Chem. Soc. 2004, 126, 11189-11201].
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
12
|
Willems AV, Deforce DL, Van Peteghem CH, Van Bocxlaer JF. Analysis of nucleic acid constituents by on-line capillary electrophoresis-mass spectrometry. Electrophoresis 2005; 26:1221-53. [PMID: 15759298 DOI: 10.1002/elps.200410278] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review is focused on the capillary electrophoresis-mass spectrometric (CE-MS) analysis of nucleic acid constituents in the broadest sense, going from nucleotides and adducted nucleotides over nucleoside analogues to oligonucleotides. These nucleic acid constituents play an important role in a variety of biochemical processes. Hence, their isolation, identification, and quantification will undoubtedly help reveal the process of life and disease mechanisms, such as carcinogenesis, and can also be useful for antitumor and antiviral drug research to provide valuable information about mechanism of action, pharmacokinetics, pharmacodynamics, toxicity, therapeutic drug level monitoring, and quality control related to this substance class. Fundamental investigations into their structure, the search for modifications, the occurrence and biochemical impact of structural variation amongst others, are therefore of great value. In view of the related bioanalytical procedures, the coupling of CE to MS has emerged as a powerful tool for the analysis of the complex mixtures of nucleic acid constituents: CE confers rapid analysis and efficient resolution, while MS provides high selectivity and sensitivity with structural characterization of minute amounts of compound. After an introduction about the biochemical and analytical perspectives on the nucleic acid constituents, the different modes of CE used in this field of research as well as the relevant CE-MS interfaces and the difficulties associated with quantitative CE-MS are briefly discussed. A large section is finally devoted to field-oriented applications.
Collapse
Affiliation(s)
- An V Willems
- Laboratory of Medical Biochemistry & Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | | | | | | |
Collapse
|
13
|
Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 2005; 105:1869-915. [PMID: 15884792 DOI: 10.1021/cr030040w] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph H Banoub
- Fisheries and Oceans Canada, Science Branch, Special Projects, P.O. Box 5667, St. John's NL A1C 5X1, Canada.
| | | | | | | | | |
Collapse
|
14
|
Turesky RJ, Vouros P. Formation and analysis of heterocyclic aromatic amine–DNA adducts in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 802:155-66. [PMID: 15036007 DOI: 10.1016/j.jchromb.2003.10.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The detection and quantification of heterocyclic aromatic amine (HAA)-DNA adducts, critical biomarkers in interspecies extrapolation of toxicity data for human risk assessment, remains a challenging analytical problem. The two main analytical methods currently in use to screen for HAA-DNA adducts are the 32P-postlabeling assay and mass spectrometry, using either accelerated mass spectrometry (AMS) or liquid chromatography and electrospray ionization mass spectrometry (LC-ESI-MS). In this review, the principal methods to synthesize and characterize DNA adducts, and the methods applied to measure HAA-DNA adduct in vitro and vivo are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Chemistry, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | |
Collapse
|
15
|
Singh R, McEwan M, Lamb JH, Santella RM, Farmer PB. An improved liquid chromatography/tandem mass spectrometry method for the determination of 8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA samples using immunoaffinity column purification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:126-134. [PMID: 12512091 DOI: 10.1002/rcm.883] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) represents an important biomarker of oxidative stress. A sensitive method for the detection of 8-oxodG in DNA samples has been developed that utilizes immunoaffinity column purification of 8-oxodG followed by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) multiple reaction monitoring (MRM) mode analysis. An internal standard of stable-isotopically labelled 8-oxodG containing [(15)N(5)] was added prior to the enzymatic digestion of DNA to deoxynucleosides, which was then subjected to immunoaffinity column purification followed by microbore positive ion LC/MS/MS MRM. The 8-oxo-7,8-dihydroguanine (8-oxoG) base product ion at m/z 168 was monitored following cleavage of the glycosidic bond of the 8-oxodG [M+H](+) ion at m/z 284. Similar determinations were made for [(15)N(5)]8-oxodG by monitoring the [(15)N(5)]8-oxoG base product ion at m/z 173 formed from the [M+H](+) ion at m/z 289. The introduction of the immunoaffinity column purification step into the method represents a significant improvement for the accurate determination of 8-oxodG since all artefactual peaks that are observed following the direct injection of digested DNA onto the LC/MS/MS system are removed. The identity of these artefactual peaks has been confirmed to be 2'-deoxyguanosine (dG), thymidine (dT) and 2'-deoxyadenosine (dA). The presence of these artefactual peaks in MRM mode analysis can be explained as a consequence of a concentration effect due to their considerably higher relative abundance in DNA compared to 8-oxodG. The highest signal intensity was observed for the artefactual peak for dA due to the fact that the adenine base formed an adduct with methanol, which is a constituent of the mobile phase. The resulting [M+H](+) ion at m/z 284 (dA m/z 252 + CH(3)OH m/z 32) gave rise to a product ion at m/z 168 following the loss of deoxyribose in MRM mode analysis. Control calf thymus DNA was digested to deoxynucleosides and unmodfied deoxynucleosides were removed by immunoaffinity column purification; the enriched 8-oxodG was determined by LC/MS/MS MRM. The level of 8-oxodG in control calf thymus DNA was determined to be 28.8 +/- 1.2 8-oxodG per 10(6) unmodified nucleotides (n = 5) using 5 microg of digested DNA. The limit of detection of the microbore LC/MS/MS MRM for 8-oxodG was determined to be 25 fmol on-column with a signal-to-noise ratio of 3.5.
Collapse
Affiliation(s)
- Rajinder Singh
- Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester, University Road, UK.
| | | | | | | | | |
Collapse
|
16
|
Turesky RJ. Heterocyclic aromatic amine metabolism, DNA adduct formation, mutagenesis, and carcinogenesis. Drug Metab Rev 2002; 34:625-50. [PMID: 12214671 DOI: 10.1081/dmr-120005665] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heterocyclic aromatic amines (HAAs) are carcinogenic compounds formed in meats, fish, and poultry prepared under common household cooking practices. Some HAAs are also formed in tobacco smoke condensate. Because of the widespread occurrence of HAAs in these daily staples, health concerns have been raised regarding the potential role of HAAs in the etiology of some human cancers associated with frequent consumption of these products. In this review, the metabolism of HAAs to biologically active metabolites that bind to DNA and provoke mutations and cancer in various biological systems is discussed. Some of the current analytical and molecular methods that are used to measure biomarkers of HAA exposure and genetic damage in experimental animal models and humans are also presented. These biochemical data combined may help to better assess the role that HAAs may have in the development of some common forms of human cancers.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Chemistry, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
17
|
Toribio F, Moyano E, Puignou L, Galceran MT. Multistep mass spectrometry of heterocyclic amines in a quadrupole ion trap mass analyser. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:812-828. [PMID: 12203675 DOI: 10.1002/jms.340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fragmentation of heterocyclic amines (HAs) in an ion trap was studied by means of the infusion of methanolic solutions containing the compounds under assay, and using an atmospheric pressure chemical ionization (APCI) as ion source. The MS(n) spectra obtained for compounds included in the same family, either aminoimidazoazaarenes (AIAs) or carbolines, were compared in order to propose fragmentation pathways for each HA. Moreover, labelled AIAs were used to establish the mechanisms. The protonated molecule was always obtained, but subsequent fragmentation was different for both families. In the case of AIAs, major product ions came from the fragmentation of the aminoimidazole moiety, thus the base peak in MS(2) corresponded to the loss of the methyl group, and losses of C(2)NH(3) and CN(2)H(2) were also observed. Further fragmentation occurred in the heterocyclic rings, mainly with losses of HCN and CH(3)CN. For carbolines, the most important product ions came from the loss of ammonia, except for harman and norharman, the loss of a methyl group for methylated carbolines or the loss of diverse fragments from the heterocyclic rings. In some cases, ion-molecule reactions into the ion trap were observed. For instance, for AalphaC or MeAalphaC one ion originating from these reactions corresponded to the base peak.
Collapse
Affiliation(s)
- Francisca Toribio
- Analytical Chemistry Department, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Bibliography. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:1164-1171. [PMID: 11747111 DOI: 10.1002/jms.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
19
|
Huber CG, Oberacher H. Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. MASS SPECTROMETRY REVIEWS 2001; 20:310-343. [PMID: 11948655 DOI: 10.1002/mas.10011] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The numerous problems posed by modern biochemistry, biology, and medicine, as well as the growing significance of genetic engineering require the application of fast and reliable methods of utmost sensitivity and selectivity for the analysis of nucleic acids. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) represent established analytical techniques for the characterization and structural elucidation of single- and double-stranded nucleic acids, ranging in size from a few nucleotides to several thousand base pairs. Although both techniques are independently applicable for nucleic acid analysis, the on-line hyphenation significantly enhances their potential for the robust and fully automable routine analysis of minute amounts of biological samples. Among the various chromatographic and mass spectrometric modes available in principle, ion-pair reversed-phase HPLC and electrospray ionization mass spectrometry (ESI-MS) have been shown to be the most suitable for the direct interfacing of liquid chromatography (LC) and MS. Instrumental setup, as well as chromatographic and mass spectrometric experimental conditions, need to be carefully selected in order to maximize the performance of the hyphenated analytical system. Applications of HPLC-ESI-MS include the characterization of oligodeoxynucleotides synthesized by solid-phase synthesis, the analysis of antisense oligodeoxynucleotides, oligonucleotide metabolites, and DNA adducts, the analysis of genomic segments specifically amplified by the polymerase chain reaction (PCR), the characterization of ribonucleic acids, the sizing of double-stranded DNA restriction fragments, the genotyping of short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs), the detection of mutations in nucleic acid sequences, and the sequencing of nucleic acids.
Collapse
Affiliation(s)
- C G Huber
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University, Innrain 52a, 6020 Innsbruck, Austria.
| | | |
Collapse
|