1
|
Cai Y. Conjugation of primary amine groups in targeted proteomics. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39229771 DOI: 10.1002/mas.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Primary amines, in the form of unmodified N-terminus of peptide/protein and unmodified lysine residue, are perhaps the most important functional groups that can serve as the starting points in proteomic analysis, especially via mass spectrometry-based approaches. A variety of multifunctional probes that conjugate primary amine groups through covalent bonds have been developed and employed to facilitate protein/protein complex characterization, including identification, quantification, structure and localization elucidation, protein-protein interaction investigation, and so forth. As an integral part of more accurate peptide quantification in targeted proteomics, isobaric stable isotope-coded primary amine labeling approaches eventually facilitated protein/peptide characterization at the single-cell level, paving the way for single-cell proteomics. The development and advances in the field can be reviewed in terms of key components of a multifunctional probe: functional groups and chemistry for primary amine conjugation; hetero-bifunctional moiety for separation/enrichment of conjugated protein/protein complex; and functionalized linker/spacer. Perspectives are primarily focused on optimizing primary amine conjugation under physiological conditions to improve characterization of native proteins, especially those associated with the surface of living cells/microorganisms.
Collapse
Affiliation(s)
- Yang Cai
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Yugandhar K, Zhao Q, Gupta S, Xiong D, Yu H. Progress in methodologies and quality-control strategies in protein cross-linking mass spectrometry. Proteomics 2021; 21:e2100145. [PMID: 34647422 DOI: 10.1002/pmic.202100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
Deciphering the interaction networks and structural dynamics of proteins is pivotal to better understanding their biological functions. Cross-linking mass spectrometry (XL-MS) is a powerful and increasingly popular technology that provides information about protein-protein interactions and their structural constraints for individual proteins and multiprotein complexes on a proteome-scale. In this review, we first assess the coverage and depth of the XL-MS technique by utilizing publicly available datasets. We then delve into the progress in XL-MS experimental and computational methodologies and examine different quality-control strategies reported in the literature. Finally, we discuss the progress in XL-MS applications along with the scope for future improvements.
Collapse
Affiliation(s)
- Kumar Yugandhar
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Qiuye Zhao
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Shobhita Gupta
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| |
Collapse
|
3
|
Biošić M, Dabić D, Škorić I, Babić S. Effects of environmental factors on nitrofurantoin photolysis in water and its acute toxicity assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1385-1393. [PMID: 34374391 DOI: 10.1039/d1em00133g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals have special attention of researchers over the world due to their possible effect on the environment and humans. This paper focuses on the photolysis of nitrofurantoin in different water matrices. Nitrofurantoin photodegradation has been indicated as a pseudo-first order photoreaction. The indirect photodegradation rate of nitrofurantoin (river water, k1 = 0.0088 min-1 and synthetic wastewater, k1 = 0.0154 min-1) was slower than its direct photolysis rate (ultrapure water, k1 = 0.0176 min-1). The highest value of quantum yield of nitrofurantoin photodegradation (ϕ = 0.2047) was observed at pH = 4, while at higher pH-values it decreased. Furthermore, the mechanism of nitrofurantoin photodegradation is proposed. Heterocyclic ring opening and further hydrolysis, nucleophilic aromatic photosubstitution and homolytic N-N bond cleavage are suggested as three main initial processes of nitrofurantoin photodegradation. Acute toxicity study of nitrofurantoin and its photoproducts with regard to luminescence inhibition of Vibrio fischeri showed that the toxic effect of nitrofurantoin (EC50 = 4.0 mg L-1) decreases by photolysis.
Collapse
Affiliation(s)
- Martina Biošić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Dario Dabić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Beard HA, Korovesis D, Chen S, Verhelst SHL. Cleavable linkers and their application in MS-based target identification. Mol Omics 2021; 17:197-209. [PMID: 33507200 DOI: 10.1039/d0mo00181c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent chemical probes are important tools in chemical biology. They range from post-translational modification (PTM)-derived metabolic probes, to activity-based probes and photoaffinity labels. Identification of the probe targets is often performed by tandem mass spectrometry-based proteomics methods. In the past fifteen years, cleavable linker technologies have been implemented in these workflows in order to identify probe targets with lower background and higher confidence. In addition, the linkers have enabled identification of modification sites. Overall, this has led to an increased knowledge of PTMs, enzyme function and drug action. This review gives an overview of the different types of cleavable linkers, and their benefits and limitations. Their applicability in target identification is also illustrated by several specific examples.
Collapse
Affiliation(s)
- Hester A Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 box 802, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
5
|
Chakrabarty JK, Bugarin A, Chowdhury SM. Evaluating the performance of an ETD-cleavable cross-linking strategy for elucidating protein structures. J Proteomics 2020; 225:103846. [PMID: 32480079 DOI: 10.1016/j.jprot.2020.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023]
Abstract
Chemical cross-linking is a powerful strategy for elucidating the structures of protein or protein complexes. The distance constraints obtained from cross-linked peptides represent the three-dimensional structures of the protein complexes. Unfortunately, structural analysis using cross-linking approach demands a significant amount of data to elucidate protein structures. This requires the development of several cleavable cross-linkers with different range of spacer chains. An Electron Transfer Dissociation (ETD) tandem mass spectrometry cleavable bond hydrazone was reported. Its fragmentation with conjugated peptides showed promise for the development of a new ETD cleavable cross-linker. However, no cross-linker was developed utilizing this ETD cleavable bond. For the first time, we attempted to develop an ETD cleavable cross-linker utilizing a hydrazone bond. We overcome the pitfall for the synthesis of this cross-linker and an easy synthesis scheme is reported. In this report, we evaluated the performance of this cross-linker called Hydrazone Incorporated ETD cleavable cross-linker (HI-ETD-XL) in model peptides and proteins. The characteristic fragmentation behavior of HI-ETD-XL during electron transfer dissociation and subsequent sequence identification of the peptide fragment ions by tandem mass spectrometry allowed the identification of cross-linked peptides unambiguously. We believe the availability of this ETD cleavable cross-linker will advance structural proteomics research significantly. SIGNIFICANCE: Many cellular processes rely on the structural dynamics of protein complexes. The detailed knowledge of the structure and dynamics of protein complexes is crucial for understanding their biological functions and regulations. However, most of the structure of these multiprotein entities remain uncharacterized and sometimes is very challenging to reveal with biophysical techniques alone. Chemical cross-linking combined with mass spectrometry (MS) has proven to be a dependable strategy in structural proteomics field. However, data complexity and false identifications are significant hindrances for unambiguous identification of cross-linked peptides. Confident identifications demand structural studies with cross-linkers with different properties and variable spacer chain lengths. This new ETD cleavable cross-linking workflow will provide additional confidence to overcome these drawbacks and allow us to pinpoint cross-linked peptides confidently.
Collapse
Affiliation(s)
| | - Alejandro Bugarin
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA; Department of Chemistry & Physics, Florida Gulf Coast University, FL, USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA.
| |
Collapse
|
6
|
Zhao B, Reilly CP, Reilly JP. ETD-Cleavable Linker for Confident Cross-linked Peptide Identifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1631-1642. [PMID: 31098958 DOI: 10.1007/s13361-019-02227-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Peptide cross-links formed using the homobifunctional-linker diethyl suberthioimidate (DEST) are shown to be ETD-cleavable. DEST has a spacer arm consisting of a 6-carbon alkyl chain and it cleaves at the amidino groups created upon reaction with primary amines. In ETD MS2 spectra, DEST cross-links can be recognized based on mass pairs consisting of peptide-NH2• and peptide+linker+NH3 ions, and backbone cleavages are more equally distributed over the two constituent peptides compared with collisional activation. Dead ends that are often challenging to distinguish from cross-links are diagnosed by intense reporter ions. ETD mass pairs can be used in MS3 experiments to confirm cross-link identifications. These features provide a simple but reliable approach to identify cross-links that should facilitate studies of protein complexes.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Colin P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
7
|
Ershov OV, Ievlev MY, Belikov MY, Maksimova VN. Synthesis of 2-Hydrazinylpyridine-3,4-dicarbonitriles and Their Reaction with Salicylaldehyde Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018060088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
9
|
Hage C, Falvo F, Schäfer M, Sinz A. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2022-2038. [PMID: 28653243 DOI: 10.1007/s13361-017-1712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. ᅟ.
Collapse
Affiliation(s)
- Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Francesco Falvo
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
- Eurofins Umwelt West GmbH, Vorgebirgsstr. 20, 50389, Wesseling, Germany
| | - Mathias Schäfer
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.
| |
Collapse
|
10
|
Iacobucci C, Hage C, Schäfer M, Sinz A. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2039-2053. [PMID: 28717933 DOI: 10.1007/s13361-017-1744-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| | - Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstr. 4, D-50939, Kӧln, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
11
|
Sinz A. Divide and conquer: cleavable cross-linkers to study protein conformation and protein–protein interactions. Anal Bioanal Chem 2016; 409:33-44. [DOI: 10.1007/s00216-016-9941-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 01/28/2023]
|
12
|
Chakrabarty JK, Naik AG, Fessler MB, Munske GR, Chowdhury SM. Differential Tandem Mass Spectrometry-Based Cross-Linker: A New Approach for High Confidence in Identifying Protein Cross-Linking. Anal Chem 2016; 88:10215-10222. [PMID: 27649375 DOI: 10.1021/acs.analchem.6b02886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemical cross-linking and mass spectrometry are now widely used to analyze large-scale protein-protein interactions. The major challenge in cross-linking approaches is the complexity of the mass spectrometric data. New approaches are required that can identify cross-linked peptides with high-confidence and establish a user-friendly analysis protocol for the biomedical scientific community. Here, we introduce a novel cross-linker that can be selectively cleaved in the gas phase using two differential tandem mass-spectrometric fragmentation methods, such as collision-induced or electron transfer dissociation (CID and ETD). This technique produces two signature mass spectra of the same cross-linked peptide, thereby producing high confidence in identifying the sites of interaction. Further tandem mass spectrometry can also give additional confidence on the peptide sequences. We demonstrate a proof-of-concept for this method using standard peptides and proteins. Peptides and proteins were cross-linked and their fragmentation characteristics were analyzed using CID and ETD tandem mass spectrometry. Two sequential cleavages unambiguously identified cross-linked peptides. In addition, the labeling efficiency of the new cross-linker was evaluated in macrophage immune cells after stimulation with the microbial ligand lipopolysaccharide and subsequent pulldown experiments with biotin-avidin affinity chromatography. We believe this strategy will help advance insights into the structural biology and systems biology of cell signaling.
Collapse
Affiliation(s)
| | | | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH , Research Triangle Park, North Carolina 27709, United States
| | - Gerhard R Munske
- Laboratory of Bioanalysis, Washington State University , Pullman, Washington 98195, United States
| | | |
Collapse
|
13
|
Fan SB, Meng JM, Lu S, Zhang K, Yang H, Chi H, Sun RX, Dong MQ, He SM. Using pLink to Analyze Cross-Linked Peptides. ACTA ACUST UNITED AC 2015; 49:8.21.1-8.21.19. [PMID: 25754995 DOI: 10.1002/0471250953.bi0821s49] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
pLink is a search engine for high-throughput identification of cross-linked peptides from their tandem mass spectra, which is the data-analysis step in chemical cross-linking of proteins coupled with mass spectrometry analysis. pLink has accumulated more than 200 registered users from all over the world since its first release in 2012. After 2 years of continual development, a new version of pLink has been released, which is at least 40 times faster, more versatile, and more user-friendly. Also, the function of the new pLink has been expanded to identifying endogenous protein cross-linking sites such as disulfide bonds and SUMO (Small Ubiquitin-like MOdifier) modification sites. Integrated into the new version are two accessory tools: pLabel, to annotate spectra of cross-linked peptides for visual inspection and publication, and pConfig, to assist users in setting up search parameters. Here, we provide detailed guidance on running a database search for identification of protein cross-links using the 2014 version of pLink.
Collapse
Affiliation(s)
- Sheng-Bo Fan
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jia-Ming Meng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, China
| | - Kun Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Rui-Xiang Sun
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| |
Collapse
|
14
|
O'Brien JP, Mayberry LK, Murphy PA, Browning KS, Brodbelt JS. Evaluating the conformation and binding interface of cap-binding proteins and complexes via ultraviolet photodissociation mass spectrometry. J Proteome Res 2013; 12:5867-77. [PMID: 24200290 DOI: 10.1021/pr400869u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the structural analysis of cap-binding proteins using a chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating solvent accessibility of proteins. Our methodology utilized a chromogenic probe (NN) to probe the exposed amine residues of wheat eukaryotic translation initiation factor 4E (eIF4E), eIF4E in complex with a fragment of eIF4G ("mini-eIF4F"), eIF4E in complex with full length eIF4G, and the plant specific cap-binding protein, eIFiso4E. Structural changes of eIF4E in the absence and presence of excess dithiothreitol and in complex with a fragment of eIF4G or full-length eIF4G are mapped. The results indicate that there are particular lysine residues whose environment changes in the presence of dithiothreitol or eIF4G, suggesting that changes in the structure of eIF4E are occurring. On the basis of the crystal structure of wheat eIF4E and a constructed homology model of the structure for eIFiso4E, the reactivities of lysines in each protein are rationalized. Our results suggest that chemical probe/UVPD mass spectrometry can successfully predict dynamic structural changes in solution that are consistent with known crystal structures. Our findings reveal that the binding of m(7)GTP to eIF4E and eIFiso4E appears to be dependent on the redox state of a pair of cysteines near the m(7)GTP binding site. In addition, tertiary structural changes of eIF4E initiated by the formation of a complex containing a fragment of eIF4G and eIF4E were observed.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry and Biochemistry and ‡Institute for Cell and Molecular Biology, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
15
|
O'Brien JP, Pruet JM, Brodbelt JS. Chromogenic chemical probe for protein structural characterization via ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:7391-7. [PMID: 23855605 DOI: 10.1021/ac401305f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating structures of proteins and protein complexes is reported, as demonstrated for lysozyme and beta-lactoglobulin with and without bound ligands. The chemical probe, NN, incorporates a UV chromophore that endows peptides with high cross sections at 351 nm, a wavelength not absorbed by unmodified peptides. Thus, NN-modified peptides can readily be differentiated from nonmodified peptides in complex tryptic digests created upon proteolysis of proteins after their exposure to the NN chemical probe. The NN chemical probe also affords two diagnostic reporter ions detected upon UVPD of the NN-modified peptide that provides a facile method for the identification of NN peptides within complex mixtures. Quantitation of the modified and unmodified peptides allows estimation of the surface accessibilities of lysine residues based on their relative reactivities with the NN chemical probe.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | | | | |
Collapse
|
16
|
Vasicek L, O'Brien JP, Browning KS, Tao Z, Liu HW, Brodbelt JS. Mapping protein surface accessibility via an electron transfer dissociation selectively cleavable hydrazone probe. Mol Cell Proteomics 2012; 11:O111.015826. [PMID: 22393264 DOI: 10.1074/mcp.o111.015826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides. Here a novel hydrazone reagent (NN) is presented that allows facile identification of all modified surface residues through a preferential cleavage upon activation by electron transfer dissociation coupled with a collision activation scan to pinpoint the modified residue in the peptide sequence. Using this approach, the correlation between percent reactivity and surface accessibility is demonstrated for two biologically active proteins, wheat eIF4E and PARP-1 Domain C.
Collapse
Affiliation(s)
- Lisa Vasicek
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
17
|
Brodbelt JS. Shedding light on the frontier of photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:197-206. [PMID: 21472579 DOI: 10.1007/s13361-010-0023-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The development of new ion activation/dissociation methods is motivated by the need for more versatile ways to characterize structures of ions, especially in the growing arena of biological mass spectrometry in which better tools for determining sequences, modifications, interactions, and conformations of biopolymers are essential. Although most agree that collision-induced dissociation (CID) remains the gold standard for ion activation/dissociation, recent inroads in electron- and photon-based activation methods have cemented their role as outstanding alternatives. This article will focus on the impact of photodissociation, including its strengths and drawbacks as an analytical tool, and its potential for further development in the next decade. Moreover, the discussion will emphasize photodissociation in quadrupole ion traps, because that platform has been used for one of the greatest arrays of new applications over the past decade.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Trnka MJ, Burlingame AL. Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites. Mol Cell Proteomics 2010; 9:2306-17. [PMID: 20813910 DOI: 10.1074/mcp.m110.003764] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many essential cellular processes depend upon the self-assembly of stable multiprotein entities. The architectures of the vast majority of these protein machines remain unknown because these structures are difficult to obtain by biophysical techniques alone. However, recent progress in defining the architecture of protein complexes has resulted from integrating information from all available biochemical and biophysical sources to generate computational models. Chemical cross-linking is a technique that holds exceptional promise toward achieving this goal by providing distance constraints that reflect the topography of protein complexes. Combined with the available structural data, these constraints can yield three-dimensional models of higher order molecular machines. However, thus far the utility of cross-linking has been thwarted by insufficient yields of cross-linked products and tandem mass spectrometry methods that are unable to unambiguously establish the identity of the covalently labeled peptides and their sites of modification. We report the cross-linking of amino moieties by 1,3-diformyl-5-ethynylbenzene (DEB) with analysis by high resolution electron transfer dissociation. This new reagent coupled with this new energy deposition technique addresses these obstacles by generating cross-linked peptides containing two additional sites of protonation relative to conventional cross-linking reagents. In addition to excellent coverage of sequence ions by electron transfer dissociation, DEB cross-linking produces gas-phase precursor ions in the 4+, 5+, or 6+ charge states that are readily segregated from unmodified and dead-end modified peptides using charge-dependent precursor selection of only quadruply and higher charge state ions. Furthermore, electron transfer induces dissociation of the DEB-peptide bonds to yield diagnostic ion signals that reveal the "molecular ions" of the unmodified peptides. We demonstrate the power of this strategy by cross-linking analysis of the 21-protein, ADP-bound GroEL-GroES chaperonin complex. Twenty-five unique sites of cross-linking were determined.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|