1
|
Banovetz JT, Manimaran S, Schelske B, Anand RK. Parallel Dielectrophoretic Capture, Isolation, and Electrical Lysis of Individual Breast Cancer Cells to Assess Variability in Enzymatic Activity. Anal Chem 2023; 95:7880-7887. [PMID: 37172139 PMCID: PMC10578154 DOI: 10.1021/acs.analchem.3c00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tumor cell heterogeneity drives disease progression and response to therapy, and therefore, there is a need for single-cell analysis methods. In this paper, we present an integrated, scalable method to analyze enzymatic activity in many individual cancer cells at once. The reported method uses dielectrophoresis (DEP) to selectively capture tumor cells at wireless electrodes aligned to an overlying array of cell-sized micropockets. Following hydrodynamic transfer of the captured cells into microfluidic chambers, the chambers are fluidically isolated and sealed with a hydrophobic ionic liquid, which possesses sufficient conductivity to allow for subsequent electrical lysis of the cells to access their contents for enzymatic assay. The wireless electrodes have an interlocking spiral design that ensures successful electrical lysis regardless of the location of the cell within the chamber. Here, breast cancer cells are assessed for β-galactosidase through its activation of a fluorogenic substrate. A key point is that the fluorogenic assay solution was optimized to allow for dielectrophoretic cell capture, thereby obviating the need for a solution exchange step. Our approach has several distinct advantages including a high rate of single-cell capture, a capture efficiency that is independent of the dimensions of the reaction chambers, no need for mechanical closure of reaction volumes, and no observed cross-talk. In this study, first, the steps of cell capture, transfer, and lysis are established on this platform in the presence of the optimized assay solution. We then quantify the increase in fluorescence intensity obtained over the duration of the enzymatic assay of individual cells. Finally, this method is applied to the analysis of β-galactosidase activity in 258 individual MDA-MB-231 breast cancer cells, revealing heterogeneity in expression of this enzyme in this cell line. We expect that the adaptability of this method will allow for expanded studies of single-cell enzymatic expression and activity. This will in turn open avenues of research into cancer cell heterogeneity in metabolism, invasiveness, and drug response. The ability to study these features of cancer at the single-cell level raises the possibility for treatment plans tailored to target the specific combinations of cell subpopulations present in tumors. Furthermore, we expect that this method can be adapted to uses outside of cancer research, such as studies of neuron metabolism, pathogenesis in bacteria, and stem cell development.
Collapse
Affiliation(s)
- Joseph T. Banovetz
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| | - Sivani Manimaran
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| | - Benjamin Schelske
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| |
Collapse
|
2
|
Wang C, Hu W, Guan L, Yang X, Liang Q. Single-cell metabolite analysis on a microfluidic chip. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Logan Howard R, Wang Y, Allbritton NL. Use of liquid lithography to form in vitro intestinal crypts with varying microcurvature surrounding the stem cell niche. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:125006. [PMID: 35241878 PMCID: PMC8887876 DOI: 10.1088/1361-6439/ac2d9c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS The role of the crypt microarchitecture and surrounding tissue curvature on intestinal stem/proliferative cell physiology is unknown. The utility of liquid lithography in creating polydimethylsiloxane (PDMS) micropillar stamps with controlled tip curvature was assessed. Using these stamps, the impact of microcurvature at the crypt base on intestinal cell and cytoskeletal behavior was studied. METHODS An SU-8 master mold as a support, polyols of varying surface energies as sacrificial liquids, and liquid PDMS as the solidifiable material were combined using liquid lithography to form PDMS micropillar arrays. Vapor phase deposition of organosilane onto the master mold was used to modify the surface energy of the master mold to shape the micropillar tips. Collagen was molded using the micropillar arrays forming a scaffold for culture of human primary colonic epithelial cells. Cell proliferation and cytoskeletal properties were assessed using fluorescent stains. RESULTS Liquid lithography using low surface energy polyols (<55 dynes/cm) generated convex-tipped PDMS micropillars, while polyols with higher surface energies (>55 dynes/cm) yielded concave-tipped PDMS micropillars. Gradients of octyltrichlorosilane deposition across a master mold with an array of microwells yielded a PDMS micropillar array with a range of tip curvatures. Human primary colonic epithelial cells cultured on micropillar-molded collagen scaffolds demonstrated a stem/proliferative cell compartment at the crypt base. Crypts with a convex base demonstrated significantly lower cell proliferation at the crypt base than that of cells in crypts with either flat or concave bases. Crypts with a convex base also displayed higher levels of G-actin activity compared to that of crypts with flat or concave bases. CONCLUSIONS Liquid lithography enabled creation of arrays of in vitro colonic crypts with programmable curvature. Primary cells at the crypt base sensed and responded to surface curvature by altering their proliferation and cytoskeletal properties.
Collapse
Affiliation(s)
- R Logan Howard
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Recent advances in single-cell analysis: Encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 2021; 234:122671. [PMID: 34364472 DOI: 10.1016/j.talanta.2021.122671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Traditional cell biology researches on cell populations by their origin, tissue, morphology, and secretions. Because of the heterogeneity of cells, research at the single-cell level can obtain more accurate and comprehensive information that reflects the physiological state and process of the cell, increasing the significance of single-cell analysis. The application of single-cell analysis is faced with the problem of contaminated or damaged cells caused by cell sample transportation. Reversible encapsulation of a single cell can protect cells from the external environment and open the encapsulation shell to release cells, thus preserving cell integrity and improving extraction efficiency of analytes. Meanwhile, microfluidic single cell analysis (MSCA) exhibits integration, miniaturization, and high throughput, which can considerably improve the efficiency of single-cell analysis. The researches on single-cell reversible encapsulation materials, single-cell analysis methods, and the MSCA integration platform are analyzed and summarized in this review. The problems of single-cell viability, network of single-cell signal, and simultaneous detection of multiple biotoxins in food based on single-cell are proposed for future research.
Collapse
|
5
|
Bounab Y, Eyer K, Dixneuf S, Rybczynska M, Chauvel C, Mistretta M, Tran T, Aymerich N, Chenon G, Llitjos JF, Venet F, Monneret G, Gillespie IA, Cortez P, Moucadel V, Pachot A, Troesch A, Leissner P, Textoris J, Bibette J, Guyard C, Baudry J, Griffiths AD, Védrine C. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. Nat Protoc 2020; 15:2920-2955. [PMID: 32788719 DOI: 10.1038/s41596-020-0354-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Characterization of immune responses is currently hampered by the lack of systems enabling quantitative and dynamic phenotypic characterization of individual cells and, in particular, analysis of secreted proteins such as cytokines and antibodies. We recently developed a simple and robust microfluidic platform, DropMap, to measure simultaneously the kinetics of secretion and other cellular characteristics, including endocytosis activity, viability and expression of cell-surface markers, from tens of thousands of single immune cells. Single cells are compartmentalized in 50-pL droplets and analyzed using fluorescence microscopy combined with an immunoassay based on fluorescence relocation to paramagnetic nanoparticles aligned to form beadlines in a magnetic field. The protocol typically takes 8-10 h after preparation of microfluidic chips and chambers, which can be done in advance. By contrast, enzyme-linked immunospot (ELISPOT), flow cytometry, time-of-flight mass cytometry (CyTOF), and single-cell sequencing enable only end-point measurements and do not enable direct, quantitative measurement of secreted proteins. We illustrate how this system can be used to profile downregulation of tumor necrosis factor-α (TNF-α) secretion by single monocytes in septic shock patients, to study immune responses by measuring rates of cytokine secretion from single T cells, and to measure affinity of antibodies secreted by single B cells.
Collapse
Affiliation(s)
- Yacine Bounab
- BIOASTER Technology Research Institute, Lyon, France.,Laboratoire de Biochimie (LBC), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France
| | - Klaus Eyer
- Laboratoire de Colloïdes et Matériaux Divisés (LCMD), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France.,Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zurich, Switzerland
| | - Sophie Dixneuf
- Biological Microsystems and Advanced Optics Engineering Unit, BIOASTER Technology Research Institute, Paris, France
| | - Magda Rybczynska
- Laboratoire de Colloïdes et Matériaux Divisés (LCMD), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France
| | - Cécile Chauvel
- Biological Microsystems and Advanced Optics Engineering Unit, BIOASTER Technology Research Institute, Paris, France
| | | | - Trang Tran
- Biological Microsystems and Advanced Optics Engineering Unit, BIOASTER Technology Research Institute, Paris, France
| | - Nathan Aymerich
- Laboratoire de Colloïdes et Matériaux Divisés (LCMD), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France
| | - Guilhem Chenon
- Laboratoire de Colloïdes et Matériaux Divisés (LCMD), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France
| | | | - Fabienne Venet
- EA7426-Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon-1 - HCL - bioMérieux, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- EA7426-Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon-1 - HCL - bioMérieux, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Lyon, France
| | - Iain A Gillespie
- Value, Evidence & Outcomes, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | | | - Virginie Moucadel
- EA7426-Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon-1 - HCL - bioMérieux, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Lyon, France
| | - Alexandre Pachot
- Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Lyon, France
| | - Alain Troesch
- Biological Microsystems and Advanced Optics Engineering Unit, BIOASTER Technology Research Institute, Paris, France
| | - Philippe Leissner
- Biological Microsystems and Advanced Optics Engineering Unit, BIOASTER Technology Research Institute, Paris, France
| | - Julien Textoris
- EA7426-Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon-1 - HCL - bioMérieux, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Lyon, France.,Anesthesiology and Critical Care Medicine, Hospices Civils de Lyon (HCL), Lyon, France
| | - Jérôme Bibette
- Laboratoire de Colloïdes et Matériaux Divisés (LCMD), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France
| | - Cyril Guyard
- Biological Microsystems and Advanced Optics Engineering Unit, BIOASTER Technology Research Institute, Paris, France
| | - Jean Baudry
- Laboratoire de Colloïdes et Matériaux Divisés (LCMD), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France.
| | - Andrew D Griffiths
- Laboratoire de Biochimie (LBC), École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris Sciences et Lettres (PSL), CNRS UMR8231, Paris, France.
| | | |
Collapse
|
6
|
|
7
|
Chen C, Xu D, Bai S, Yu Z, Zhu Y, Xing X, Chen H. Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves. LAB ON A CHIP 2020; 20:1227-1237. [PMID: 32100799 DOI: 10.1039/d0lc00040j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inoculation of single cells into separate culture chambers is one of the key requirements in single-cell analysis. This paper reports an innovative microfluidic chip integrating two pneumatic microvalves to screen and print single cells onto a well plate. The upper and lower size limits of cells can be dynamically controlled by regulating the deformation of two adjacent microvalves. Numerical simulations were employed to systematically study the influence of membrane dimensions and pressure on the deflection of a valve. A mathematical model was then modified to predict the size of cells captured by a microvalve at various pressures. The membrane deflection was further studied using confocal imaging. The critical pressure trapping beads of various sizes was experimentally determined. These experiments validated the accuracy of both numerical simulations and the mathematical model. Furthermore, single beads and endothelial cells with the desired size range were screened using dual valves and printed onto well plates with 100% efficiency. Viability studies suggested that the screening process had no significant impact on cells. This device enables dynamic regulation of both the lower and the upper size limits of cells for printing. It has significant application potential in inoculating cells with desired sizes for various fields such as clonal expansion, monoclonality development and single-cell genomic studies.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Li X, Feng H, Li Z, Shi Y, Tian J, Zhao C, Yu M, Liu Z, Li H, Shi B, Wang Q, Li L, Wang D, Zhu L, Liu R, Li Z. High-Throughput Identification and Screening of Single Microbial Cells by Nanobowl Array. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44933-44940. [PMID: 31675212 DOI: 10.1021/acsami.9b08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-throughput screening and fast identification of single bacterial cells are crucial for clinical diagnosis, bioengineering, and fermentation engineering. Although single-cell technologies have been developed extensively in recent years, the single-cell technologies for bacteria still need further exploration. In this study, we demonstrate an identification and screening technology for single bacterial cells based on a large-scale nanobowl array, which is well-ordered and size-adjustable for use with different kinds of bacteria. When the culture medium with monodispersed bacteria was placed on the nanobowl array, it successfully enabled loading of single bacterium into a single nanobowl. Because of the limitative size and depth of the nanobowls, mixture of different bacteria species could be screened according to their sizes. In addition, with the help of a low electrical current, the bacteria can be further screened according to their intrinsic surface charges. If combined with micromanipulation technology, high-throughput single bacterial selection can be achieved in future.
Collapse
Affiliation(s)
- Xiuyan Li
- Beijing Institute of Graphic Communication , Beijing 102600 , P. R. China
| | - Hongqing Feng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhe Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yue Shi
- Beijing Institute of Graphic Communication , Beijing 102600 , P. R. China
| | - Jingjing Tian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chaochao Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Min Yu
- School of Stomatology and Medicine , Foshan University , Foshan 528000 , P. R. China
| | - Zhuo Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Hu Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Bojing Shi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Qian Wang
- Beijing Institute of Graphic Communication , Beijing 102600 , P. R. China
| | - Luhai Li
- Beijing Institute of Graphic Communication , Beijing 102600 , P. R. China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Biotechnology , Beijing 100071 , P. R. China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Biotechnology , Beijing 100071 , P. R. China
| | - Ruping Liu
- Beijing Institute of Graphic Communication , Beijing 102600 , P. R. China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , P. R. China
| |
Collapse
|
9
|
Yue WQ, Tan Z, Li XP, Liu FF, Wang C. Micro/nanofluidic technologies for efficient isolation and detection of circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Gao D, Jin F, Zhou M, Jiang Y. Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst 2019; 144:766-781. [PMID: 30298867 DOI: 10.1039/c8an01186a] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single cell analysis has become of great interest with unprecedented capabilities for the systematic investigation of cell-to-cell variation in large populations. Rapid and multi-parametric analysis of intercellular biomolecules at the single-cell level is imperative for the improvement of early disease diagnosis and personalized medicine. However, the small size of cells and the low concentration levels of target biomolecules are critical challenges for single cell analysis. In recent years, microfluidic platforms capable of handling small-volume fluid have been demonstrated to be powerful tools for single cell analysis. In addition, microfluidic techniques allow for precise control of the localized microenvironment, which yield more accurate outcomes. Many different microfluidic techniques have been greatly improved for highly efficient single-cell manipulation and highly sensitive detection over the past few decades. To date, microfluidics-based single cell analysis has become the hot research topic in this field. In this review, we particularly highlight the advances in this field during the past three years in the following three aspects: (1) microfluidic single cell manipulation based on microwells, micropatterns, droplets, traps and flow cytometric methods; (2) detection methods based on fluorescence, mass spectrometry, electrochemical, and polymerase chain reaction-based analysis; (3) applications in the fields of small molecule detection, protein analysis, multidrug resistance analysis, and single cell sequencing with droplet microfluidics. We also discuss future research opportunities by focusing on key performances of throughput, multiparametric target detection and data processing.
Collapse
Affiliation(s)
- Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China.
| | | | | | | |
Collapse
|
11
|
Khadpekar AJ, Khan M, Sose A, Majumder A. Low Cost and Lithography-free Stamp fabrication for Microcontact Printing. Sci Rep 2019; 9:1024. [PMID: 30705344 PMCID: PMC6355877 DOI: 10.1038/s41598-018-36521-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Microcontact printing (µCP) is a commonly used technique for patterning proteins of interest on substrates. The cells take the shape of these printed patterns. This technique is used to explore the effect of cellular morphology on their various functions such as survival, differentiation, migration, etc. An essential step for µCP is to fabricate a stamp from a silicon mould, prepared using lithography. Lithography is cost intensive and needs a high level of expertise to handle the instrumentation. Also, one stamp can be used to print patterns of one size and shape. Here, to overcome these limitations, we devised a low-cost fabrication technique using readily available objects such as injection needles and polystyrene beads. We patterned the C2C12, myoblasts cells on the shapes printed using lithography-free fabricated stamps. We further exploited the surface curvature of the stamp to vary the size of the print either by changing the applied load and/or the substrate stiffness. We showed that the print dimension could be predicted well by using JKR theory of contact mechanics. Moreover, some innovative improvisations enabled us to print complex shapes, which would be otherwise difficult with conventional lithography technique. We envisage that this low cost and easy to fabricate method will allow many research laboratories with limited resources to perform exciting research which is at present out of their reach.
Collapse
Affiliation(s)
| | - Moin Khan
- Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhishek Sose
- Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
12
|
Wu J, Lin JM. Microfluidic Technology for Single-Cell Capture and Isolation. MICROFLUIDICS FOR SINGLE-CELL ANALYSIS 2019. [DOI: 10.1007/978-981-32-9729-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Li X, Wang Y, Zeng B, Li Y, Tan H, Zandvliet HJW, Zhang X, Lohse D. Entrapment and Dissolution of Microbubbles Inside Microwells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10659-10667. [PMID: 30102544 PMCID: PMC6136092 DOI: 10.1021/acs.langmuir.8b02173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Indexed: 05/20/2023]
Abstract
The formation and evolution of immersed surface micro- and nanobubbles are essential in various practical applications, such as the usage of superhydrophobic materials, drug delivery, and mineral flotation. In this work, we investigate the entrapment of microbubbles on a hydrophobic surface, structured with microwells, when water flow passes along, and the subsequent microbubble dissolution. At entrapment, the microbubble is initially pinned at the edge of the microwell. At some point, the three-phase contact line detaches from one side of the edge and separates from the wall, after which it further recedes. We systematically investigate the evolution of the footprint diameter and the contact angle of the entrapped microbubbles, which reveals that the dissolution process is in the constant contact angle mode. By varying the gas undersaturation level, we quantify how a high gas undersaturation enhances the dissolution process, and compare with simplified theoretical predictions for dissolving bubbles on a plane surface. We find that geometric partial blockage effects of the diffusive flux out of the microbubble trapped in the microwell lead to reduced dissolution rates.
Collapse
Affiliation(s)
- Xiaolai Li
- School
of Mechanical Engineering and Automation and Beijing Advanced Innovation Center
for Biomedical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
- Physics of Fluids Group, Department of Applied Physics, J. M. Burgers
Centre for Fluid Dynamics and Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Yuliang Wang
- School
of Mechanical Engineering and Automation and Beijing Advanced Innovation Center
for Biomedical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
- E-mail: (Y.W.)
| | - Binglin Zeng
- School
of Mechanical Engineering and Automation and Beijing Advanced Innovation Center
for Biomedical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yanshen Li
- Physics of Fluids Group, Department of Applied Physics, J. M. Burgers
Centre for Fluid Dynamics and Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Huanshu Tan
- Physics of Fluids Group, Department of Applied Physics, J. M. Burgers
Centre for Fluid Dynamics and Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Harold J. W. Zandvliet
- Physics of Fluids Group, Department of Applied Physics, J. M. Burgers
Centre for Fluid Dynamics and Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
| | - Xuehua Zhang
- Physics of Fluids Group, Department of Applied Physics, J. M. Burgers
Centre for Fluid Dynamics and Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
- Department
of Chemical and Materials Engineering, University
of Alberta, 12-211 Donadeo
Innovation Centre for Engineering, Edmonton, Alberta, Canada T6G1H9
- E-mail: (X.Z.)
| | - Detlef Lohse
- Physics of Fluids Group, Department of Applied Physics, J. M. Burgers
Centre for Fluid Dynamics and Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The
Netherlands
- E-mail: (D.L.)
| |
Collapse
|
14
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
|
16
|
Microfluidic Cell Isolation and Recognition for Biomedical Applications. CELL ANALYSIS ON MICROFLUIDICS 2018. [DOI: 10.1007/978-981-10-5394-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
18
|
Mao S, Zhang W, Huang Q, Khan M, Li H, Uchiyama K, Lin JM. In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution. Angew Chem Int Ed Engl 2017; 57:236-240. [PMID: 29136313 DOI: 10.1002/anie.201710273] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/29/2017] [Indexed: 12/20/2022]
Abstract
Single-cell biology provides insights into some of the most fundamental processes in biology and promotes the understanding of life's mysteries. As the technologies to study single-cells expand, they will require sophisticated analytical tools to make sense of various behaviors and components of single-cells as well as their relations in the adherent tissue culture. In this paper, we revealed cell heterogeneity and uncovered the connections between cell adhesion strength and cell viability at single-cell resolution by extracting single adherent cells of interest from a standard tissue culture by using a microfluidic chip-based live single-cell extractor (LSCE). We believe that this method will provide a valuable new tool for single-cell biology.
Collapse
Affiliation(s)
- Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Qiushi Huang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Mao S, Zhang W, Huang Q, Khan M, Li H, Uchiyama K, Lin JM. In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sifeng Mao
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Qiushi Huang
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Mashooq Khan
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Haifang Li
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Katsumi Uchiyama
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Jin-Ming Lin
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| |
Collapse
|
20
|
Ning R, Zhuang Q, Lin JM. Biomaterial-Based Microfluidics for Cell Culture and Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Li P, Dou X, Feng C, Müller M, Chang MW, Frettlöh M, Schönherr H. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7799-7809. [PMID: 28486805 PMCID: PMC5740480 DOI: 10.1021/acs.langmuir.7b00749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Indexed: 06/07/2023]
Abstract
The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.
Collapse
Affiliation(s)
- Ping Li
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Xiaoqiu Dou
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Chuanliang Feng
- State
Key Lab of Metal Matrix Composites, School of Materials Science and
Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, 200240, Shanghai, People’s Republic of China
| | - Mareike Müller
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Matthew Wook Chang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, and NUS Synthetic
Biology for Clinical and Technological Innovation (SynCTI), Life Sciences
Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Martin Frettlöh
- Quh-Lab
Food Safety, Siegener
Strasse 29, 57080, Siegen, Germany
| | - Holger Schönherr
- Physical
Chemistry I and Research Center of Micro and Nanochemistry and Engineering
(Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| |
Collapse
|
22
|
Brown CL, Fleischauer V, Heo J. High-throughput Screening of Erratic Cell Volume Regulation Using a Hydrogel-based Single-cell Microwell Array. ANAL SCI 2017; 33:525-530. [PMID: 28392532 DOI: 10.2116/analsci.33.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we report that a single-cell microwell array based on photocrosslinked hydrogel can be used to screen cells exhibiting a defective regulatory volume decrease (RVD) in high-throughput. The RVD is a regulatory function of cells that maintains cell volume homeostasis in a hypotonic medium. Single Madin-Darby canine kidney (MDCK) cells grown in the microwells were loaded with a volume-sensitive fluorescence dye. Changes in the volume of discrete single cells were traced for 20 min in a hypotonic solution using a wide-field fluorescence microscopy. The volume changes of more than 100 single cells were analyzed simultaneously using time-lapse fluorescence micrographs. Cells showing erratic RVD could be easily screened from the image analysis. Nearly 40% of the MDCK single cells exhibited weak, or no, RVD. Since other previously reported methods could not detect as many changes in the volume of discrete singles cells as the method used in this report, we anticipate that our reported method will provide an efficient way of elucidating the RVD mechanisms of cells that have not yet been completely understood.
Collapse
|
23
|
|
24
|
|
25
|
ZHUANG QC, NING RZ, MA Y, LIN JM. Recent Developments in Microfluidic Chip for in vitro Cell-based Research. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60919-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Fabrication of a cell-adhesive microwell array for 3-dimensional in vitro cell model. Biomed Eng Lett 2015. [DOI: 10.1007/s13534-015-0183-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Xie W, Gao D, Jin F, Jiang Y, Liu H. Study of Phospholipids in Single Cells Using an Integrated Microfluidic Device Combined with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2015; 87:7052-9. [DOI: 10.1021/acs.analchem.5b00010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weiyi Xie
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
- State
Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology,
Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Dan Gao
- State
Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology,
Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China
| | - Feng Jin
- Neptunus Pharmaceutical Technology Center, Shenzhen 518057, China
| | - Yuyang Jiang
- State
Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology,
Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- School
of Medicine, Tsinghua University, Beijing 100084, China
| | - Hongxia Liu
- State
Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology,
Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China
| |
Collapse
|
28
|
Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot. Sci Rep 2015; 5:9551. [PMID: 25828383 PMCID: PMC4381353 DOI: 10.1038/srep09551] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.
Collapse
|
29
|
Shi Y, Ma J, Zhang X, Li H, Jiang L, Qin J. Hypoxia combined with spheroid culture improves cartilage specific function in chondrocytes. Integr Biol (Camb) 2015; 7:289-97. [PMID: 25614382 DOI: 10.1039/c4ib00273c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the chondrocyte phenotype and function in a physiologically relevant microenvironment remains a major challenge for cartilage repair in tissue engineering applications. This work presents a straightforward strategy to create a high throughput concave microwell array used for generating multicellular spheroids of chondrocytes and facilitating the maintenance of the articular chondrocyte phenotype and function by combining 3D spheroid culture with hypoxia. The polydimethylsiloxane (PDMS) concave microwells were simply produced from a concave SU-8 template fabricated using a soft-lithography approach and easily adopted for size-controlled spheroid culture. 3D spheroid culture was observed to facilitate the cartilage-specific phenotype and function maintenance as compared to 2D monolayer culture. Combining hypoxia with spheroid culture markedly increased the expressions of cartilage-specific collagen II and aggrecan at protein and mRNA levels. The hypoxia-inducible factor (HIF) signaling pathway was found to get involved in phenotype maintenance, metabolism and differentiation of chondrocytes by regulating HIF-1α and HIF-2α, respectively. The established approach provides a useful platform for a wide range of applications in the field of cartilage biology, stem cell research and high throughput 3D drug testing in cancer.
Collapse
Affiliation(s)
- Yang Shi
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | | | | | | | | | | |
Collapse
|
30
|
Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays. Anal Chim Acta 2014; 832:44-50. [DOI: 10.1016/j.aca.2014.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
31
|
Choi JS, Bae S, Kim KH, Kim JYH, Sim SJ, Seo TS. Capture and culturing of single microalgae cells, and retrieval of colonies using a perforated hemispherical microwell structure. RSC Adv 2014. [DOI: 10.1039/c4ra09730k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We fabricated perforated hemispherical microwells and used them to capture and culture single microalgal cells, and to retrieve the resulting colonies with high speed and simplicity.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| | - Sunwoong Bae
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| | - Kyung Hoon Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| | - Jaoon Y. H. Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for The BioCentury
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon, South Korea
| |
Collapse
|
32
|
Zheng XT, Yu L, Li P, Dong H, Wang Y, Liu Y, Li CM. On-chip investigation of cell-drug interactions. Adv Drug Deliv Rev 2013; 65:1556-74. [PMID: 23428898 DOI: 10.1016/j.addr.2013.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
Investigation of cell-drug interaction is of great importance in drug discovery but continues to pose significant challenges to develop robust, fast and high-throughput methods for pharmacologically profiling of potential drugs. Recently, cell chips have emerged as a promising technology for drug discovery/delivery, and their miniaturization and flow-through operation significantly reduce sample consumption while dramatically improving the throughput, reliability, resolution and sensitivity. Herein we review various types of miniaturized cell chips used in investigation of cell-drug interactions. The design and fabrication of cell chips including material selection, surface modification, cell trapping/patterning, concentration gradient generation and mimicking of in vivo environment are presented. Recent advances of on-chip investigations of cell-drug interactions, in particular the high-throughput screening, cell sorting, cytotoxicity testing, drug resistance analysis and pharmacological profiling are examined and discussed. It is expected that this survey can provide thoughtful basics and important applications of on-chip investigations of cell-drug interactions, thus greatly promoting research and development interests in this area.
Collapse
|
33
|
Ankam S, Teo BKK, Kukumberg M, Yim EKF. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis 2013; 9:128-42. [PMID: 23899508 PMCID: PMC3896583 DOI: 10.4161/org.25425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/19/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells in vivo are housed within a functional microenvironment termed the "stem cell niche." As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research.
Collapse
Affiliation(s)
- Soneela Ankam
- Department of Bioengineering; National University of Singapore; Singapore
- Duke-NUS Graduate Medical School; Singapore
| | - Benjamin KK Teo
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Marek Kukumberg
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Evelyn KF Yim
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
- Department of Surgery; National University of Singapore; Singapore
| |
Collapse
|
34
|
Chen Q, Wu J, Zhang Y, Lin Z, Lin JM. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. LAB ON A CHIP 2012; 12:5180-5. [PMID: 23108418 DOI: 10.1039/c2lc40858a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic-based single cells analysis has been of great interest in recent years, promising disease diagnosis and personalized medicine. Current technologies are challenging in bioselectively isolating specific single cells from complex matrices. Herein, a novel microfluidic platform integrated with cell-recognizable aptamer-encoded microwells was specifically developed to isolate single tumor cells with satisfied single-cell occupancy and unique bioselectivity. In this work, the designed microwell-structures enable us to encourage strong 3D local topographic interactions of the target cell surface with biomolecules and regulate the single-cell resolution. Under the optimized size of microwells, the single-cell occupancy was significantly enhanced from 0.5% to 88.2% through the introduction of the aptamer. Analysis of the target cells was directly performed in short time periods (<5.0 min) with small volumes (4.5 μL). Importantly, such an aptamer-enabled microfluidic device shows an excellent selectivity for target single cells isolation compared with three control cells. Subsequently, targeted isolation and analysis of single tumor cells were demonstrated by using artificial complex cell samples at simulated conditions, and various cellular carboxylesterases were studied by time-course measurements of cellular fluorescence kinetics at individual-cell level. Thus, our technique will open up a new opportunity in single-cell level-based disease diagnosis and personalize medicine screening.
Collapse
Affiliation(s)
- Qiushui Chen
- Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
35
|
Gao D, Liu H, Jiang Y, Lin JM, Gao D, Liu H, Jiang Y. Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
A microfluidic photolithography for controlled encapsulation of single cells inside hydrogel microstructures. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4538-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Rengarajan GT, Walder L, Gorb SN, Steinhart M. High-throughput generation of micropatterns of dye-containing capsules embedded in transparent elastomeric monoliths by inkjet printing. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1169-1173. [PMID: 22360303 DOI: 10.1021/am3000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the high-throughput fabrication of transparent elastomeric monoliths containing customized micropatterns of microcapsules, which might be used as highly flexible identity tags, sensor elements, and photochromic, photonic, or phononic systems. High-throughput replication molding of microsphere monolayers used as sacrificial primary templates via negative secondary replicas and positive tertiary replicas yielded elastomeric specimens containing dense hexagonal arrays of open spherical microcavities. In a subsequent inkjet printing step, some of the open-spherical microcavities were filled with functional materials such as dyes. The subsequent addition of an elastomeric cover layer led to encapsulation of the dyes trapped in the printed microcavities, while empty microcavities were filled with elastomer and vanished.
Collapse
|
38
|
Luo RC, Chen CH. Structured Microgels through Microfluidic Assembly and Their Biomedical Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/soft.2012.11001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Heyries KA, Hansen CL. Parylene C coating for high-performance replica molding. LAB ON A CHIP 2011; 11:4122-4125. [PMID: 21997187 DOI: 10.1039/c1lc20623k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.
Collapse
Affiliation(s)
- Kevin A Heyries
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
40
|
Lew V, Nguyen D, Khine M. Shrink-induced single-cell plastic microwell array. ACTA ACUST UNITED AC 2011; 16:450-6. [PMID: 22093302 DOI: 10.1016/j.jala.2011.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 01/09/2023]
Abstract
The ability to interrogate and track single cells over time in a high-throughput format would provide critical information for fundamental biological understanding of processes and for various applications, including drug screening and toxicology. We have developed an ultrarapid and simple method to create single-cell wells of controllable diameter and depth with commodity shrink-wrap film and tape. Using a programmable CO(2) laser, we cut hole arrays into the tape. The tape then serves as a shadow mask to selectively etch wells into commodity shrink-wrap film by O(2) plasma. When the shrink-wrap film retracts upon briefly heating, high-aspect plastic microwell arrays with diameters down to 20 μm are readily achieved. We calibrated the loading procedure with fluorescent microbeads. Finally, we demonstrate the utility of the wells by loading fluorescently labeled single human embryonic stem cells into the wells.
Collapse
Affiliation(s)
- Valerie Lew
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
41
|
Abstract
Microfluidic devices exhibit a great promising development in clinical diagnosis and disease screening due to their advantages of precise controlling of fluid flow, requirement of miniamount sample, rapid reaction speed and convenient integration. In this paper, the improvements of microfluidic diagnostic technologies in recent years are reviewed. The applications and developments of on-chip disease marker detection, microfluidic cell selection and cell drug metabolism, and diagnostic micro-devices are discussed.
Collapse
Affiliation(s)
- Haifang Li
- School of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | |
Collapse
|