1
|
Li N, Dou S, Feng L, Zhu Q, Lu N. Eliminating sweet spot in MALDI-MS with hydrophobic ordered structure as target for quantifying biomolecules. Talanta 2020; 218:121172. [PMID: 32797923 DOI: 10.1016/j.talanta.2020.121172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), the analyte is usually distributed unevenly throughout the sample spot. The area with aggregated analyte molecules contributing abundant signal, is termed as "sweet spot", which results in poor detection reproducibility and makes it impossible to quantify analytes without internal standards. We proposed a strategy to eliminate sweet spot in MALDI-MS by using a hydrophobic ordered structure as target. The target is fabricated by creating a hydrophobic silicon nanopillar array and subsequently decorating it uniformly with poly(methyl methacrylate) nanodots for capturing analytes. The sweet spot is eliminated by distributing analyte molecules uniformly on this target, and then result in a uniform MS image, which demonstrates an ideal reproducibility. Finally, with the target assisted MALDI-MS as biosensor was suitable to analyze practical sample such as bacitracin A in milk. Horse heart myoglobin and, angiotensin III molecules can be quantified without internal standard using α-cyano-4-hydroxycinnamic acid as matrix. This biosensor presented good linearity, high salts tolerance and high signal-to-noise ratio (up to 271.8), even the 1 mol/L salt concentration. This strategy could provide an alternative for improving the performance of MALDI-MS.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuzhen Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lei Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qunyan Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Tucker B, Hermann M, Mainguy A, Oleschuk R. Hydrophobic/hydrophilic patterned surfaces for directed evaporative preconcentration. Analyst 2020; 145:643-650. [DOI: 10.1039/c9an01782h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a microfluidic platform that rapidly deposits many samples and preconcentrates them, making it suitable for a wide range of high-throughput detection schemes.
Collapse
Affiliation(s)
- Ben Tucker
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | | | - Alexa Mainguy
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | | |
Collapse
|
3
|
Li G, Ma F, Cao Q, Zheng Z, DeLaney K, Liu R, Li L. Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nat Commun 2019; 10:4697. [PMID: 31619683 PMCID: PMC6795811 DOI: 10.1038/s41467-019-12548-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Comprehensive protein identification and concomitant structural probing of proteins are of great biological significance. However, this is challenging to accomplish simultaneously in one confined space. Here, we develop a nanosecond photochemical reaction (nsPCR)-based click chemistry, capable of structural probing of proteins and enhancing their identifications through on-demand removal of surrounding matrices within nanoseconds. The nsPCR is initiated using a photoactive compound, 2-nitrobenzaldehyde (NBA), and is examined by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Benefiting from the on-demand matrix-removal effect, this nsPCR strategy enables enhanced neuropeptide identification and visualization from complex tissue samples such as mouse brain tissue. The design shows great promise for structural probing of proteins up to 155 kDa due to the exclusive accessibility of nsPCR to primary amine groups, as demonstrated by its general applicability using a series of proteins with various lysine residues from multiple sample sources, with accumulated labeling efficiencies greater than 90%. Mass spectrometry-based quantitative proteomics aim to identify and quantify proteins from complex biological samples. Here, the authors developed a method for simultaneous high-throughput protein labelling and on-demand matrix removal within nanoseconds.
Collapse
Affiliation(s)
- Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhen Zheng
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rui Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Guo L, Xiao C, Wang S, Gao T, Ling L, Guo X. Quantitation of Glutathione by Quinoline-5, 8-Dione-Based Tag Strategy Using MALDI Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:625-633. [PMID: 30747410 DOI: 10.1007/s13361-019-02135-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
In the present work, we developed an UV-absorptive and highly reactive tag aromatic molecule, quinoline-5,8-dione (QLD), for robust quantitative analysis of GSH by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The QLD could react with GSH with high efficiency at room temperature, and the resultant QLD-GSH conjugate could be readily detected by MALDI MS without interferences. By using the QLD tag, the detection limit of GSH was lowered to 10 fmol μL-1, which was four orders of magnitude higher than that detected without using the QLD tag. Furthermore, accurate quantitative measurements of GSH in solution were successfully demonstrated by using glutamic acid-cysteine-alanine (ECA) as an internal standard. By properly adjusting the ECA concentrations, the intensity ratio value of QLD-tagged GSH (QLD-GSH) to QLD-tagged ECA (QLD-ECA) displayed a good linearity with GSH concentrations in a broad range from 4 to 4000 μM. Finally, the GSH level in HeLa cell lysates was also successfully detected, and the results are consistent with that obtained by a colorimetric assay. In summary, the proposed QLD-based tag method should be a rapid, cost-/time-effective, and sensitive new method for quantitative determination of GSH by MALDI MS. Graphical Abstract.
Collapse
Affiliation(s)
- Liming Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Sheng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tianyang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ling Ling
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
|
6
|
Duncombe TA, Raad MD, Bowen BP, Singh AK, Northen TR. Insulator Nanostructure Desorption Ionization Mass Spectrometry. Anal Chem 2018; 90:9657-9661. [PMID: 30063326 DOI: 10.1021/acs.analchem.8b01989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface-assisted laser desorption ionization (SALDI) is an approach for gas-phase ion generation for mass spectrometry using laser excitation on typically conductive or semiconductive nanostructures. Here, we introduce insulator nanostructure desorption ionization mass spectrometry (INDI-MS), a nanostructured polymer substrate for SALDI-MS analysis of small molecules and peptides. INDI-MS surfaces are produced through the self-assembly of a perfluoroalkyl silsesquioxane nanostructures in a single chemical vapor deposition silanization-step. We find that surfaces formed from the perfluorooctyltrichlorosilane monomer assemble semielliptical features with a 10 nm height, diameters between 10 and 50 nm, and have attomole-femtomole sensitivities for selected analytes. Surfaces prepared with silanes that either lack the trichloro or perfluoro groups, lack sensitivity. Further, we demonstrate that hydrophobic INDI regions can be micropatterned onto hydrophilic surfaces to perform on-chip self-desalting in an array format.
Collapse
Affiliation(s)
- Todd A Duncombe
- DOE Joint BioEnergy Institute , 5885 Hollis Street , Emeryville , California 94608 , United States.,Sandia National Laboratories , Livermore , California 94550 , United States
| | - Markus De Raad
- Environmental Genomics and Systems Biology, Biosciences , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Benjamin P Bowen
- Joint Genome Institute , Department of Energy , 2800 Mitchell Drive , Walnut Creek , California 94598 , United States.,Environmental Genomics and Systems Biology, Biosciences , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Anup K Singh
- DOE Joint BioEnergy Institute , 5885 Hollis Street , Emeryville , California 94608 , United States.,Sandia National Laboratories , Livermore , California 94550 , United States
| | - Trent R Northen
- DOE Joint BioEnergy Institute , 5885 Hollis Street , Emeryville , California 94608 , United States.,Joint Genome Institute , Department of Energy , 2800 Mitchell Drive , Walnut Creek , California 94598 , United States.,Environmental Genomics and Systems Biology, Biosciences , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| |
Collapse
|
7
|
Meng X, Hu J, Chao Z, Liu Y, Ju H, Cheng Q. Thermoresponsive Arrays Patterned via Photoclick Chemistry: Smart MALDI Plate for Protein Digest Enrichment, Desalting, and Direct MS Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1324-1333. [PMID: 29239171 DOI: 10.1021/acsami.7b13640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sample desalting and concentration are crucial steps before matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis. Current sample pretreatment approaches require tedious fabrication and operation procedures, which are unamenable to high-throughput analysis and also result in sample loss. Here, we report the development of a smart MALDI substrate for on-plate desalting, enrichment, and direct MS analysis of protein digests based on thermoresponsive, hydrophilic/hydrophobic transition of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) microarrays. Superhydrophilic 1-thioglycerol microwells are first constructed on alkyne-silane-functionalized rough indium tin oxide substrates based on two sequential thiol-yne photoclick reactions, whereas the surrounding regions are modified with hydrophobic 1H,1H,2H,2H-perfluorodecanethiol. Surface-initiated atom-transfer radical polymerization is then triggered in microwells to form PNIPAM arrays, which facilitate sample loading and enrichment of protein digests by concentrating large-volume samples into small dots and achieving on-plate desalting through PNIPAM configuration change at elevated temperature. The smart MALDI plate shows high performance for mass spectrometric analysis of cytochrome c and neurotensin in the presence of 1 M urea and 100 mM NaHCO3, as well as improved detection sensitivity and high sequence coverage for α-casein and cytochrome c digests in femtomole range. The work presents a versatile sample pretreatment platform with great potential for proteomic research.
Collapse
Affiliation(s)
- Xiao Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Quan Cheng
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
8
|
Wang S, Xiao C, Jiang L, Ling L, Chen X, Guo X. A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2017; 999:114-122. [PMID: 29254561 DOI: 10.1016/j.aca.2017.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Despite the significance of membrane proteins (MPs) in biological system is indisputable, their specific natures make them notoriously difficult to be analyzed. Particularly, the widely used Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) prefers analyses of hydrophilic cytosolic proteins and has a limited ionization efficiency towards hydrophobic MPs. Herein, a hydrophobic compound (E)-propyl α-Cyano-4-Hydroxyl Cinnamylate (CHCA-C3), a propyl-esterified derivative of α-cyano-4-hydroxycinnamic acid (CHCA), was applied as a contaminant tolerant matrix for high sensitivity MALDI-MS analyses of MPs. With CHCA-C3, the detection limits of hydrophobic peptides were 10- to 100-fold better than those using CHCA. Furthermore, high quality of spectra could be achieved in the presence of high concentration of chaotropes, salts and detergents, as well as human urinary and serum environment. Also, CHCA-C3 could generate uniform sample distribution even in the presence of contaminants. This high contaminant-resistance was revealed to be ascribed to the enhanced hydrophobicity of CHCA-C3 with a lower affinity towards hydrophilic contaminants. The application of CHCA-C3 is further demonstrated by the analysis of trypsin/CNBr digests of bacteriorhodopsin containing seven transmembrane domains (TMDs), which dramatically increased numbers of identified hydrophobic peptides in TMDs and sequence coverage (∼100%). Besides, a combined method by using CHCA-C3 with fluoride solvent and a patterned paraffin plate was established for analysis of integral MPs. We achieved a low detection limit of 10 fmol for integral bacteriorhodopsin, which could not be detected using traditional matrices such as 3,5-dimethoxy-4-hydroxycinamic acid, 2,5-dihydroxyacetophenone even at sample concentration of 10 pmol.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Ling Ling
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Lin H, Yuan K, Deng C. Preparation of a TiO 2-NH 2 modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. Talanta 2017; 175:427-434. [PMID: 28842012 DOI: 10.1016/j.talanta.2017.07.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023]
Abstract
In this work, a TiO2 film was prepared on a MALDI plate by atomic layer deposition (ALD) technique and then modified with -NH2. The obtained TiO2-NH2 modified plate was applied for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. The ALD TiO2 film displayed quite uniform morphology, and attached firmly to the MALDI plate with rather stable physical and chemical properties, which resulted in fine stability of the plate in performance. The -NH2 groups offered the film better hydrophilicity and affinity toward glycopeptides. The on-plate simultaneous enrichment performance of the TiO2-NH2 modified plate was investigated by β-casein digests, HRP digests and human serum.
Collapse
Affiliation(s)
- Haizhu Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kaiping Yuan
- State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Wang S, Xiao C, Li Y, Ling L, Chen X, Guo X. A Surface Pattern on MALDI Steel Plate for One-Step In-Situ Self-Desalting and Enrichment of Peptides/Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:428-433. [PMID: 28058591 DOI: 10.1007/s13361-016-1584-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
We report a novel strategy to achieve simultaneous one-step in-situ self-desalting and enrichment (OISE) of peptides/proteins on a facilely fabricated patterned MALDI steel plate with a circular paraffin-steel-polystyrene structure. The OISE plate could efficiently segregate salts from both analytes and matrices while retaining both analyte and matrix concentrate, and facilitating them to form homogeneous co-crystals on the centrally located polystyrene pattern. With the OISE plate, high quality and reproducible spectra could be obtained for low abundance peptides even in the presence of high salt concentrations (200 mM NH4HCO3, 1 M NaCl, or 400 mM urea). Using this strategy, a significant sensitivity enhancement was gained over traditional MALDI plate. The practical utility of this method was further demonstrated by the successful profiling of BSA digests and human serum. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sheng Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Ying Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ling Ling
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinhua Guo
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
11
|
Wang S, Xiao Z, Xiao C, Wang H, Wang B, Li Y, Chen X, Guo X. (E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:709-718. [PMID: 26729454 DOI: 10.1007/s13361-015-1325-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sheng Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhaohui Xiao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Huixin Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bing Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinhua Guo
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
Gong X, Xiong X, Wang S, Li Y, Zhang S, Fang X, Zhang X. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry. Anal Chem 2015; 87:9745-51. [PMID: 26312607 DOI: 10.1021/acs.analchem.5b01877] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.
Collapse
Affiliation(s)
- Xiaoyun Gong
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China.,National Institute of Metrology , Beijing 100013, China
| | | | - Song Wang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Yanyan Li
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Sichun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiang Fang
- National Institute of Metrology , Beijing 100013, China
| | - Xinrong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
13
|
Shi C, Lin Q, Deng C. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis. Talanta 2015; 135:81-6. [DOI: 10.1016/j.talanta.2014.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 11/25/2022]
|
14
|
Eriksson AIK, Edwards K, Agmo Hernández V. Cooperative adsorption behavior of phosphopeptides on TiO2 leads to biased enrichment, detection and quantification. Analyst 2015; 140:303-12. [DOI: 10.1039/c4an01580k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel data show that anomalous adsorption behavior and common washing procedures can lead to biased results in TiO2-based phosphoproteomics.
Collapse
Affiliation(s)
| | - K. Edwards
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | | |
Collapse
|
15
|
Xu L, Zhu W, Sun R, Ding Y. A Ti4+-immobilized phosphate polymer-patterned silicon substrate for on-plate selective enrichment and self-desalting of phosphopeptides. Analyst 2015; 140:3216-24. [DOI: 10.1039/c5an00102a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A circular hydrophobic–hydrophilic-Ti4+ immobilized phosphate polymer is patterned as the sample support for selective enrichment, wash-free self-desalting and mass spectroscopy (MS) analysis of phosphopeptides.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Wei Zhu
- Department of Oncology
- First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- PR China
| | - Rui Sun
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
16
|
Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry. J Chromatogr A 2014; 1358:102-9. [DOI: 10.1016/j.chroma.2014.06.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/15/2022]
|
17
|
Zeng Z, Wang Y, Guo X, Wang L, Lu N. On-plate self-desalting and matrix-free LDI MS analysis of peptides with a surface patterned sample support. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:895-898. [PMID: 24658805 DOI: 10.1007/s13361-014-0845-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
A hydrophobic-hydrophilic-hydrophobic pattern has been produced on the surface of a silicon substrate for selective enrichment, self-desalting, and matrix-free analysis of peptides in a single step. Upon sample application, the sample solution is first confined in a small area by a hydrophobic F-SAM outer area, after which salt contaminants and peptides are selectively enriched in the hydrophilic and hydrophobic areas, respectively. Simultaneously, matrix background noise is significantly reduced or eliminated because of immobilization of matrix molecules. As a result, the detection sensitivity is enhanced 20-fold compared with that obtained using the usual MALDI plate, and interference-free detection is achieved in the low m/z range. In addition, peptide ions can be identified unambiguously in the presence of NH₄HCO₃ (100 mM), urea (1 M), and NaCl (1 M). When the device was applied to the analysis of BSA digests, the peptide recovery and protein identification confidence were greatly improved.
Collapse
|
18
|
Longobardi S, Gravagnuolo AM, Rea I, De Stefano L, Marino G, Giardina P. Hydrophobin-coated plates as matrix-assisted laser desorption/ionization sample support for peptide/protein analysis. Anal Biochem 2014; 449:9-16. [DOI: 10.1016/j.ab.2013.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/03/2023]
|
19
|
He X, Chen Q, Zhang Y, Lin JM. Recent advances in microchip-mass spectrometry for biological analysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.09.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zeng Z, Wang Y, Guo X, Wang L, Lu N. On-plate glycoproteins/glycopeptides selective enrichment and purification based on surface pattern for direct MALDI MS analysis. Analyst 2013; 138:3032-7. [PMID: 23577342 DOI: 10.1039/c3an00107e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a novel method has been proposed to achieve selective enrichment and purification of glycoproteins/glycopeptides on a surface patterned sample support, which consists of a hydrophobic outer layer (F-SAM) and an internal boronic acid-modified gold microspot (900 μm). Upon deposition, the sample solution is firstly concentrated in a small area by repulsion of the hydrophobic outer layer, and then the glycoproteins/glycopeptides are selectively captured through boronic acid covalently binding in the inner layer. However, the non-glycosylated proteins/peptides or high concentration salts are removed after rinsing with alkaline solution. As a result, the detection sensitivity is improved by an order of magnitude greater than when using a stainless steel MALDI plate. With surface patterned sample support, the glycoproteins/glycopeptides can be detected even under interference from the excessive existing non-glycosylated proteins/peptides (10 times more than glycoproteins/glycopeptides). Simultaneously, high-quality mass spectra can be obtained even in the presence of urea (1 M), NaCl (1 M), or NH4HCO3 (200 mM). Therefore, this novel technique may be applied to high-throughput analysis of low-abundance glycoproteins/glycopeptides in complicated proteome research.
Collapse
Affiliation(s)
- Zhoufang Zeng
- College of Chemistry, Jilin University, Changchun 130012, China
| | | | | | | | | |
Collapse
|
21
|
Wang Y, Zeng Z, Li J, Chi L, Guo X, Lu N. Biomimetic antireflective silicon nanocones array for small molecules analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:66-73. [PMID: 23250665 DOI: 10.1007/s13361-012-0498-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 05/27/2023]
Abstract
Biomimetic antireflective silicon nanocones array is used for analysis of small molecules by mass spectrometry. The role of the absorbed laser energy and its distribution in the laser desorption/ionization process has been investigated by varying the antireflective features precisely. By optimizing the antireflective silicon array, the absorbed laser energy can be channeled completely into the desorption/ionization of analytes. The optimized silicon array exhibits excellent performance to detect peptide, amino acid, drug molecule, and carbohydrate without any interference in the low-mass region.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Stolowitz ML. On-target and nanoparticle-facilitated selective enrichment of peptides and proteins for analysis by MALDI-MS. Proteomics 2012; 12:3438-50. [DOI: 10.1002/pmic.201200252] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/27/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Mark L. Stolowitz
- Canary Center at Stanford for Cancer Early Detection; Department of Radiology; Stanford University School of Medicine; Palo Alto CA USA
| |
Collapse
|
23
|
Fukuyama Y, Tanimura R, Maeda K, Watanabe M, Kawabata SI, Iwamoto S, Izumi S, Tanaka K. Alkylated Dihydroxybenzoic Acid as a MALDI Matrix Additive for Hydrophobic Peptide Analysis. Anal Chem 2012; 84:4237-43. [DOI: 10.1021/ac300540r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuko Fukuyama
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Ritsuko Tanimura
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kazuki Maeda
- Department of Mathematical and
Life Sciences, Graduate School of Science, Hiroshima University,1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526,
Japan
| | - Makoto Watanabe
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shin-Ichirou Kawabata
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shunsuke Izumi
- Department of Mathematical and
Life Sciences, Graduate School of Science, Hiroshima University,1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526,
Japan
| | - Koichi Tanaka
- Koichi Tanaka Laboratory of Advanced
Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|