1
|
Li Z, Zhang X, Li G, Peng J, Su X. Light scattering imaging modal expansion cytometry for label-free single-cell analysis with deep learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108726. [PMID: 40112688 DOI: 10.1016/j.cmpb.2025.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND OBJECTIVE Single-cell imaging plays a key role in various fields, including drug development, disease diagnosis, and personalized medicine. To obtain multi-modal information from a single-cell image, especially for label-free cells, this study develops modal expansion cytometry for label-free single-cell analysis. METHODS The study utilizes a deep learning-based architecture to expand single-mode light scattering images into multi-modality images, including bright-field (non-fluorescent) and fluorescence images, for label-free single-cell analysis. By combining adversarial loss, L1 distance loss, and VGG perceptual loss, a new network optimization method is proposed. The effectiveness of this method is verified by experiments on simulated images, standard spheres of different sizes, and multiple cell types (such as cervical cancer and leukemia cells). Additionally, the capability of this method in single-cell analysis is assessed through multi-modal cell classification experiments, such as cervical cancer subtypes. RESULTS This is demonstrated by using both cervical cancer cells and leukemia cells. The expanded bright-field and fluorescence images derived from the light scattering images align closely with those obtained through conventional microscopy, showing a contour ratio near 1 for both the whole cell and its nucleus. Using machine learning, the subtyping of cervical cancer cells achieved 92.85 % accuracy with the modal expansion images, which represents an improvement of nearly 20 % over single-mode light scattering images. CONCLUSIONS This study demonstrates the light scattering imaging modal expansion cytometry with deep learning has the capability to expand the single-mode light scattering image into the artificial multimodal images of label-free single cells, which not only provides the visualization of cells but also helps for the cell classification, showing great potential in the field of single-cell analysis such as cancer cell diagnosis.
Collapse
Affiliation(s)
- Zhi Li
- School of Integrated Circuits, Shandong University, Jinan 250101, China; Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuantao Su
- School of Integrated Circuits, Shandong University, Jinan 250101, China.
| |
Collapse
|
2
|
Zheng J, Teoh HK, Delco ML, Bonassar LJ, Cohen I. Application of a variational autoencoder for clustering and analyzing in situ articular cartilage cellular response to mechanical stimuli. PLoS One 2024; 19:e0297947. [PMID: 38768116 PMCID: PMC11104615 DOI: 10.1371/journal.pone.0297947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 05/22/2024] Open
Abstract
In various biological systems, analyzing how cell behaviors are coordinated over time would enable a deeper understanding of tissue-scale response to physiologic or superphysiologic stimuli. Such data is necessary for establishing both normal tissue function and the sequence of events after injury that lead to chronic disease. However, collecting and analyzing these large datasets presents a challenge-such systems are time-consuming to process, and the overwhelming scale of data makes it difficult to parse overall behaviors. This problem calls for an analysis technique that can quickly provide an overview of the groups present in the entire system and also produce meaningful categorization of cell behaviors. Here, we demonstrate the application of an unsupervised method-the Variational Autoencoder (VAE)-to learn the features of cells in cartilage tissue after impact-induced injury and identify meaningful clusters of chondrocyte behavior. This technique quickly generated new insights into the spatial distribution of specific cell behavior phenotypes and connected specific peracute calcium signaling timeseries with long term cellular outcomes, demonstrating the value of the VAE technique.
Collapse
Affiliation(s)
- Jingyang Zheng
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Han Kheng Teoh
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Michelle L. Delco
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
3
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Zeng Q, Xia MC, Yin X, Cheng S, Xue Z, Tan S, Gong X, Ye Z. Recent developments in ionization techniques for single-cell mass spectrometry. Front Chem 2023; 11:1293533. [PMID: 38130875 PMCID: PMC10733462 DOI: 10.3389/fchem.2023.1293533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The variation among individual cells plays a significant role in many biological functions. Single-cell analysis is advantageous for gaining insight into intricate biochemical mechanisms rarely accessible when studying tissues as a whole. However, measurement on a unicellular scale is still challenging due to unicellular complex composition, minute substance quantities, and considerable differences in compound concentrations. Mass spectrometry has recently gained extensive attention in unicellular analytical fields due to its exceptional sensitivity, throughput, and compound identification abilities. At present, single-cell mass spectrometry primarily concentrates on the enhancement of ionization methods. The principal ionization approaches encompass nanoelectrospray ionization (nano-ESI), laser desorption ionization (LDI), secondary ion mass spectrometry (SIMS), and inductively coupled plasma (ICP). This article summarizes the most recent advancements in ionization techniques and explores their potential directions within the field of single-cell mass spectrometry.
Collapse
Affiliation(s)
- Qingli Zeng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Meng-Chan Xia
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Simin Cheng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
5
|
Cheng H, Tang Y, Li Z, Guo Z, Heath JR, Xue M, Wei W. Non-Mass Spectrometric Targeted Single-Cell Metabolomics. Trends Analyt Chem 2023; 168:117300. [PMID: 37840599 PMCID: PMC10569257 DOI: 10.1016/j.trac.2023.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolic assays serve as pivotal tools in biomedical research, offering keen insights into cellular physiological and pathological states. While mass spectrometry (MS)-based metabolomics remains the gold standard for comprehensive, multiplexed analyses of cellular metabolites, innovative technologies are now emerging for the targeted, quantitative scrutiny of metabolites and metabolic pathways at the single-cell level. In this review, we elucidate an array of these advanced methodologies, spanning synthetic and surface chemistry techniques, imaging-based methods, and electrochemical approaches. We summarize the rationale, design principles, and practical applications for each method, and underscore the synergistic benefits of integrating single-cell metabolomics (scMet) with other single-cell omics technologies. Concluding, we identify prevailing challenges in the targeted scMet arena and offer a forward-looking commentary on future avenues and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Hanjun Cheng
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Yin Tang
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Wei Wei
- Institute for Systems Biology, Seattle, WA, 98109, United States
| |
Collapse
|
6
|
Neuling NR, Allert RD, Bucher DB. Prospects of single-cell nuclear magnetic resonance spectroscopy with quantum sensors. Curr Opin Biotechnol 2023; 83:102975. [PMID: 37573624 DOI: 10.1016/j.copbio.2023.102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Single-cell analysis can unravel functional heterogeneity within cell populations otherwise obscured by ensemble measurements. However, noninvasive techniques that probe chemical entities and their dynamics are still lacking. This challenge could be overcome by novel sensors based on nitrogen-vacancy (NV) centers in diamond, which enable nuclear magnetic resonance (NMR) spectroscopy on unprecedented sample volumes. In this perspective, we briefly introduce NV-based quantum sensing and review the progress made in microscale NV-NMR spectroscopy. Last, we discuss approaches to enhance the sensitivity of NV ensemble magnetometers to detect biologically relevant concentrations and provide a roadmap toward their application in single-cell analysis.
Collapse
Affiliation(s)
- Nick R Neuling
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany; Munich Center of Quantum Science and Technology (MCQST), Schellingstr. 4, 80779 München, Germany
| | - Robin D Allert
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany; Munich Center of Quantum Science and Technology (MCQST), Schellingstr. 4, 80779 München, Germany
| | - Dominik B Bucher
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany; Munich Center of Quantum Science and Technology (MCQST), Schellingstr. 4, 80779 München, Germany.
| |
Collapse
|
7
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Tian X, Jiang H, Wang M, Cui W, Guo Y, Zheng L, Hu L, Qu G, Yin Y, Cai Y, Jiang G. Exploring the performance of quadrupole, time-of-flight, and multi-collector ICP-MS for dual-isotope detection on single nanoparticles and cells. Anal Chim Acta 2023; 1240:340756. [PMID: 36641141 DOI: 10.1016/j.aca.2022.340756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
To meet the demand for multi-element/isotope analysis at the single nanoparticle (NP) or cell level, different types of inductively coupled plasma mass spectroscopy (ICP-MS) have been used to simultaneously monitor multiple mass-to-charge ratios in single-particle/cell ICP-MS (SP/SC-ICP-MS) analysis. Systematic evaluation and comparison of the performance of these techniques are urgently required. Herein, three ICP-quadrupole (Q)-MS, two ICP-time of flight (TOF)-MS, and one multi-collector (MC)-ICP-MS instruments were employed to simultaneously detect 107Ag and 109Ag on single Ag NPs and Ag-exposed cyanobacteria cells. The evaluation was conducted by comparing the measured event-specific 109Ag:107Ag ratios with the natural ratio. Duration of NP or cell events and time resolution in the peak hopping mode were the main factors affecting the performance of ICP-Q-MS. Under the optimal condition (100 μs for both dwell time and settling time), less than 45% of the NP or cell events had a 109Ag:107Ag ratio deviating <30% from the natural ratio. Most events obtained via ICP-TOF-MS were paired events with both isotopes detected. For large-size NPs and cells with high exposure levels, nearly 80% of the events had a ratio deviation within ±30%. MC-ICP-MS performed particularly well in isotope determination with all the events having a ratio deviation within ±5%. For ICP-TOF-MS and MC-ICP-MS, the signal intensity of the events was the main factor affecting the accuracy of the measured 109Ag:107Ag ratios due to the counting statistics. The established methods and results provide insight on the analyses of two elements/isotopes or more on single NPs or cells. Based on the comparison of the advantages and limitations of these instruments, this study provides a critical reference for future multi-element/isotope SP/SC-ICP-MS analyses.
Collapse
Affiliation(s)
- Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haowen Jiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbin Cui
- R&D Center, Shandong Yingsheng Biotechnology Co., Ltd., Beijing, 100088, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
9
|
Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Xu Y, Zhang T, Li Z, Liu X, Zhu Y, Zhao W, Chen H, Xu J. Photoelectrochemical Cytosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Tian‐Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiang‐Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuan‐Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
11
|
Michalke B. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. Int J Mol Sci 2022; 23:ijms23116109. [PMID: 35682788 PMCID: PMC9181184 DOI: 10.3390/ijms23116109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Element analysis in clinical or biological samples is important due to the essential role in clinical diagnostics, drug development, and drug-effect monitoring. Particularly, the specific forms of element binding, actual redox state, or their spatial distribution in tissue or in single cells are of interest in medical research. This review summarized exciting combinations of sophisticated sample delivery systems hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS), enabling a broadening of information beyond the well-established outstanding detection capability. Deeper insights into pathological disease processes or intracellular distribution of active substances were provided, enabling a better understanding of biological processes and their dynamics. Examples were presented from spatial elemental mapping in tissue, cells, or spheroids, also considering elemental tagging. The use of natural or artificial tags for drug monitoring was shown. In the context of oxidative stress and ferroptosis iron, redox speciation gained importance. Quantification methods for Fe2+, Fe3+, and ferritin-bound iron were introduced. In Wilson’s disease, free and exchangeable copper play decisive roles; the respective paragraph provided information about hyphenated Cu speciation techniques, which provide their fast and reliable quantification. Finally, single cell ICP-MS provides highly valuable information on cell-to-cell variance, insights into uptake of metal-containing drugs, and their accumulation and release on the single-cell level.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Shen B, Pade LR, Choi SB, Muñoz-LLancao P, Manzini MC, Nemes P. Capillary Electrophoresis Mass Spectrometry for Scalable Single-Cell Proteomics. Front Chem 2022; 10:863979. [PMID: 35464213 PMCID: PMC9024316 DOI: 10.3389/fchem.2022.863979] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Understanding the biochemistry of the cell requires measurement of all the molecules it produces. Single-cell proteomics recently became possible through advances in microanalytical sample preparation, separation by nano-flow liquid chromatography (nanoLC) and capillary electrophoresis (CE), and detection using electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). Here, we demonstrate capillary microsampling CE-ESI-HRMS to be scalable to proteomics across broad cellular dimensions. This study established proof-of-principle using giant, ∼250-µm-diameter cells from embryos of the frog Xenopus laevis and small, ∼35-µm-diameter neurons in culture from the mouse hippocampus. From ∼18 ng, or ∼0.2% of the total cellular proteome, subcellular analysis of the ventral-animal midline (V11) and equatorial (V12) cells identified 1,133 different proteins in a 16-cell embryo. CE-HRMS achieved ∼20-times higher sensitivity and doubled the speed of instrumental measurements compared to nanoLC, the closest neighboring single-cell technology of choice. Microanalysis was scalable to 722 proteins groups from ∼5 ng of cellular protein digest from identified left dorsal-animal midline cell (D11), supporting sensitivity for smaller cells. Capillary microsampling enabled the isolation and transfer of individual neurons from the culture, identifying 37 proteins between three different cells. A total of 224 proteins were detected from 500 pg of neuronal protein digest, which estimates to a single neuron. Serial dilution returned 157 proteins from sample amounts estimating to about half a cell (250 pg protein) and 70 proteins from ca. a quarter of a neuron (125 pg protein), suggesting sufficient sensitivity for subcellular proteomics. CE-ESI-HRMS complements nanoLC proteomics with scalability, sensitivity, and speed across broad cellular dimensions.
Collapse
Affiliation(s)
- Bowen Shen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Leena R. Pade
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Sam B. Choi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Pablo Muñoz-LLancao
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | - M. Chiara Manzini
- Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| |
Collapse
|
13
|
Choi SB, Polter AM, Nemes P. Patch-Clamp Proteomics of Single Neurons in Tissue Using Electrophysiology and Subcellular Capillary Electrophoresis Mass Spectrometry. Anal Chem 2021; 94:1637-1644. [PMID: 34964611 DOI: 10.1021/acs.analchem.1c03826] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding of the relationship between cellular function and molecular composition holds a key to next-generation therapeutics but requires measurement of all types of molecules in cells. Developments in sequencing enabled semiroutine measurement of single-cell genomes and transcriptomes, but analytical tools are scarce for detecting diverse proteins in tissue-embedded cells. To bridge this gap for neuroscience research, we report the integration of patch-clamp electrophysiology with subcellular shot-gun proteomics by high-resolution mass spectrometry (HRMS). Recording of electrical activity permitted identification of dopaminergic neurons in the substantia nigra pars compacta. Ca. 20-50% of the neuronal soma content, containing an estimated 100 pg of total protein, was aspirated into the patch pipette filled with ammonium bicarbonate. About 1 pg of somal protein, or ∼0.25% of the total cellular proteome, was analyzed on a custom-built capillary electrophoresis (CE) electrospray ionization platform using orbitrap HRMS for detection. A series of experiments were conducted to systematically enhance detection sensitivity through refinements in sample processing and detection, allowing us to quantify ∼275 different proteins from somal aspirate-equivalent protein digests from cultured neurons. From single neurons, patch-clamp proteomics of the soma quantified 91, 80, and 95 different proteins from three different dopaminergic neurons or 157 proteins in total. Quantification revealed detectable proteomic differences between the somal protein samples. Analysis of canonical knowledge predicted rich interaction networks between the observed proteins. The integration of patch-clamp electrophysiology with subcellular CE-HRMS proteomics expands the analytical toolbox of neuroscience.
Collapse
Affiliation(s)
- Sam B Choi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Abigail M Polter
- Department of Pharmacology & Physiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C. 20037, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
He S, Wei J, Ding L, Yang X, Wu Y. State-of-the-arts techniques and current evolving approaches in the separation and detection of circulating tumor cell. Talanta 2021; 239:123024. [PMID: 34952370 DOI: 10.1016/j.talanta.2021.123024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from the primary tumor and then enter the circulatory system, a small part of which may evolve into metastatic cancer under appropriate microenvironment conditions. The detection of CTCs is a truly noninvasive, dynamic monitor for disease changes, which has considerable clinical implications in the selection of targeted drugs. However, their inherent rarity and heterogeneity pose significant challenges to their isolation and detection. Even the "gold standard", CellSearch™, suffers from high expenses, low capture efficiency, and the consumption of time. With the advancement of CTCs analysis technologies in recent years, the yield and efficiency of CTCs enrichment have gradually been improved, as well as detection sensitivity. In this review, the isolation and detection strategies of CTCs have been completely described and the potential directions for future research and development have also been highlighted through analyzing the challenges faced by current strategies.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Robinson E, Giffen P, Hassall D, Ball D, Reid H, Coe D, Teague S, Terry R, Earl M, Marchand J, Farrer B, Havelund R, Gilmore IS, Marshall PS. Multimodal imaging of drug and excipients in rat lungs following an inhaled administration of controlled-release drug laden PLGA microparticles. Analyst 2021; 146:3378-3390. [PMID: 33876155 DOI: 10.1039/d0an02333g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Controlled-release formulations, in the form of micro- or nanoparticles, are increasingly attractive to the pharmaceutical industry for drug delivery. For respiratory illnesses, controlled-release microparticle formulations provide an opportunity to deliver a higher percentage of an inhaled medicament dose to the lung, thus potentially reducing the therapeutic dose, frequency of dosing, and minimising side-effects. We describe the use of a multimodal approach consisting of MALDI MS imaging, 3D depth profiling TOF-SIMS analysis, and histopathology to monitor the distribution of drug and excipients in sections taken from excised rat lungs following an inhaled administration of drug-laden microparticles. Following a single dose, the administered drug was detected in the lung via both MALDI MS and TOF-SIMS over a range of time points. Both imaging techniques enabled the characterisation of the distribution and retention of drug particles and identified differences in the capabilities of both imaging modalities. Histochemical staining of consecutive sections was used to provide biological context to the findings and will also be discussed in this presentation. We demonstrate how this multimodal approach could be used to help increase our understanding of the use of controlled release microparticles.
Collapse
Affiliation(s)
- Eve Robinson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Girard M, Bereau T. Finite-size transitions in complex membranes. Biophys J 2021; 120:2436-2443. [PMID: 33961864 DOI: 10.1016/j.bpj.2021.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 11/15/2022] Open
Abstract
The lipid-raft hypothesis postulates that cell membranes possess some degree of lateral organization. The hypothesis has attracted much attention while remaining controversial, with an underlying mechanism that remains elusive. One idea that supports rafts relies on the membrane lying near a critical point. Although supported by experimental evidence, holding a many-component membrane at criticality requires a delicate tuning of all components-a daunting task. Here, we propose a coherent framework to reconcile critical behavior and lipid regulation. Using a lattice model, we show that lipid regulation of a complex membrane, i.e., allowing composition to fluctuate based on relative chemical potentials, can lead to critical behavior. The results are robust against specific values of the chemical potentials. Instead of a conventional transition point, criticality is observed over a large temperature range. This surprising behavior arises from finite-size effects, causing nonequivalent time and space averages. The instantaneous lipid distribution effectively develops a translational symmetry, which we relate to long-wavelength Goldstone modes. The framework is robust and reproduces important experimental trends; membrane-demixing temperature closely follows cell-growth temperature. It also ensures criticality of fixed-composition extracts, such as giant plasma membrane vesicles. Our clear picture provides a strong argument in favor of the critical-membrane hypothesis, without the need for specific sensing mechanisms.
Collapse
Affiliation(s)
- Martin Girard
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Mainz, Germany; Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Antimalarial drugs impact chemical messenger secretion by blood platelets. Biochem Biophys Rep 2020; 22:100758. [PMID: 32346619 PMCID: PMC7182713 DOI: 10.1016/j.bbrep.2020.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Background Advances in antimalarial drug development are important for combating malaria. Among the currently identified antimalarial drugs, it is suggested that some interact directly with the malarial parasites while others interact indirectly with the parasites. While this approach leads to parasite elimination, little is known about how these antimalarial drugs impact immune cells that are also critical in malarial response. Methods Herein, the effects of two common antimalarial drugs, chloroquine and quinine, on platelets were explored at both the bulk level, using high performance liquid chromatography, and the single cell level, using carbon-fiber microelectrode amperometry, to characterize any changes in chemical messenger secretion. Results The data reveal that both drugs cause platelet activation and reduce the number of platelet exocytosis events as well as delay fusion pore opening and closing. Conclusions This work demonstrates how chloroquine and quinine quantitatively and qualitatively impact in vitro platelet function. General significance Overall, the goal of this work is to promote understanding about how antimalarial drugs impact platelets as this may affect antimalarial drug development as well as therapeutic approaches to treat malarial infection. Antimalarial drugs impact platelet function by inducing activation. Single cell electrochemistry reveals changes in platelet function. It is important to consider platelet behaviors beyond aggregation to understand the side effects of antimalarial drugs.
Collapse
|
18
|
Jaiswal J, Dhayal M. Electroanalytical Method for Quantification of Hepatocellular Carcinoma Cells as Charge Transport Barriers in Culture Media. ELECTROANAL 2020. [DOI: 10.1002/elan.201900553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Juhi Jaiswal
- Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi UP-221005 India
| | - Marshal Dhayal
- Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi UP-221005 India
| |
Collapse
|
19
|
Analysis of Lipids in Single Cells and Organelles Using Nanomanipulation-Coupled Mass Spectrometry. Methods Mol Biol 2020; 2064:19-30. [PMID: 31565764 DOI: 10.1007/978-1-4939-9831-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to discriminately analyze the chemical constituents of single cells and organelles is highly sought after and necessary to establish true biomarkers. Some major challenges of individual cell analysis include requirement and expenditure of a large sample of cells as well as extensive extraction and separation techniques. Here, we describe methods to perform individual cell and organelle extractions of both tissues and cells in vitro using nanomanipulation coupled to mass spectrometry. Lipid profiles display heterogeneity from extracted adipocytes and lipid droplets, demonstrating the necessity for single cell analysis. The application of these techniques can be applied to other cell and organelle types for selective and thorough monitoring of disease progression and biomarker discovery.
Collapse
|
20
|
A highly efficient introduction system for single cell- ICP-MS and its application to detection of copper in single human red blood cells. Talanta 2020; 206:120174. [DOI: 10.1016/j.talanta.2019.120174] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
|
21
|
Abstract
Single-cell level metabolomics gives a snapshot of small molecules, intermediates, and products of cellular metabolism within a biological system. These small molecules, typically less than 1 kDa in molecular weight, often provide the basis of biochemical heterogeneity within cells. The molecular differences between cells with a cell type are often attributed to random stochastic biochemical processes, cell cycle stages, environmental stress, and diseased states. In this chapter, current limitations and challenges in single-cell analysis by mass spectrometry will be discussed alongside the prospects of single-cell metabolomics in systems biology. A few selected example of the recent development in mass spectrometry tools to unravel single-cell metabolomics will be described as well.
Collapse
|
22
|
Sun D, Cao F, Tian Y, Li A, Xu W, Chen Q, Shi W, Xu S. Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform. Anal Chem 2019; 91:15484-15490. [DOI: 10.1021/acs.analchem.9b03294] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Sun
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Fanghao Cao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
- School of Chemical Engineering and New Energy Materials, Zhuhai College, Jilin University, Zhuhai 519041, P.R. China
| | - Yu Tian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
- College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Qidan Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
- School of Chemical Engineering and New Energy Materials, Zhuhai College, Jilin University, Zhuhai 519041, P.R. China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
23
|
Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 2019; 37:107388. [DOI: 10.1016/j.biotechadv.2019.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
24
|
Zhang X, Oleinick A, Jiang H, Liao Q, Qiu Q, Svir I, Liu Y, Amatore C, Huang W. Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages. Angew Chem Int Ed Engl 2019; 58:7753-7756. [DOI: 10.1002/anie.201902734] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xin‐Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Alexander Oleinick
- PASTEUR, Départment de ChimieÉcole Normale SupérieurePSL, Research UniversitySorbonne UniversitésUPMC Univ. Paris 06 France
- CNRS 24 rue Lhomond 75005 Paris France
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Quan‐Lan Liao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Quan‐Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Irina Svir
- PASTEUR, Départment de ChimieÉcole Normale SupérieurePSL, Research UniversitySorbonne UniversitésUPMC Univ. Paris 06 France
- CNRS 24 rue Lhomond 75005 Paris France
| | - Yan‐Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Christian Amatore
- PASTEUR, Départment de ChimieÉcole Normale SupérieurePSL, Research UniversitySorbonne UniversitésUPMC Univ. Paris 06 France
- CNRS 24 rue Lhomond 75005 Paris France
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Wei‐Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| |
Collapse
|
25
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
26
|
Zhang X, Oleinick A, Jiang H, Liao Q, Qiu Q, Svir I, Liu Y, Amatore C, Huang W. Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902734] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin‐Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Alexander Oleinick
- PASTEUR, Départment de ChimieÉcole Normale SupérieurePSL, Research UniversitySorbonne UniversitésUPMC Univ. Paris 06 France
- CNRS 24 rue Lhomond 75005 Paris France
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Quan‐Lan Liao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Quan‐Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Irina Svir
- PASTEUR, Départment de ChimieÉcole Normale SupérieurePSL, Research UniversitySorbonne UniversitésUPMC Univ. Paris 06 France
- CNRS 24 rue Lhomond 75005 Paris France
| | - Yan‐Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Christian Amatore
- PASTEUR, Départment de ChimieÉcole Normale SupérieurePSL, Research UniversitySorbonne UniversitésUPMC Univ. Paris 06 France
- CNRS 24 rue Lhomond 75005 Paris France
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Wei‐Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| |
Collapse
|
27
|
Nadappuram BP, Cadinu P, Barik A, Ainscough AJ, Devine MJ, Kang M, Gonzalez-Garcia J, Kittler JT, Willison KR, Vilar R, Actis P, Wojciak-Stothard B, Oh SH, Ivanov AP, Edel JB. Nanoscale tweezers for single-cell biopsies. NATURE NANOTECHNOLOGY 2019; 14:80-88. [PMID: 30510280 DOI: 10.1038/s41565-018-0315-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/19/2018] [Indexed: 05/19/2023]
Abstract
Much of the functionality of multicellular systems arises from the spatial organization and dynamic behaviours within and between cells. Current single-cell genomic methods only provide a transcriptional 'snapshot' of individual cells. The real-time analysis and perturbation of living cells would generate a step change in single-cell analysis. Here we describe minimally invasive nanotweezers that can be spatially controlled to extract samples from living cells with single-molecule precision. They consist of two closely spaced electrodes with gaps as small as 10-20 nm, which can be used for the dielectrophoretic trapping of DNA and proteins. Aside from trapping single molecules, we also extract nucleic acids for gene expression analysis from living cells without affecting their viability. Finally, we report on the trapping and extraction of a single mitochondrion. This work bridges the gap between single-molecule/organelle manipulation and cell biology and can ultimately enable a better understanding of living cells.
Collapse
Affiliation(s)
| | - Paolo Cadinu
- Department of Chemistry, Imperial College London, London, UK
| | - Avijit Barik
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexander J Ainscough
- Department of Chemistry, Imperial College London, London, UK
- Department of Experimental Medicine and Toxicology, Imperial College London, London, UK
| | - Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Minkyung Kang
- Department of Chemistry, Imperial College London, London, UK
| | | | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, UK
| | - Paolo Actis
- School of Electronic and Electrical Engineering, Pollard Institute, University of Leeds, Leeds, UK
| | | | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | - Joshua B Edel
- Department of Chemistry, Imperial College London, London, UK.
| |
Collapse
|
28
|
Kempa EE, Hollywood KA, Smith CA, Barran PE. High throughput screening of complex biological samples with mass spectrometry – from bulk measurements to single cell analysis. Analyst 2019; 144:872-891. [DOI: 10.1039/c8an01448e] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the state of the art in HTS using mass spectrometry with minimal sample preparation from complex biological matrices. We focus on industrial and biotechnological applications.
Collapse
Affiliation(s)
- Emily E. Kempa
- Michael Barber Centre for Collaborative Mass Spectrometry
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - Katherine A. Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Clive A. Smith
- Sphere Fluidics Limited
- The Jonas-Webb Building
- Babraham Research Campus
- Cambridge
- UK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
29
|
De Silva IW, Kretsch AR, Lewis HM, Bailey M, Verbeck GF. True one cell chemical analysis: a review. Analyst 2019; 144:4733-4749. [DOI: 10.1039/c9an00558g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The constantly growing field of True One Cell (TOC) analysis has provided important information on the direct chemical composition of various cells and cellular components.
Collapse
|
30
|
Ye D, Gu C, Ewing A. Using Single-Cell Amperometry and Intracellular Vesicle Impact Electrochemical Cytometry To Shed Light on the Biphasic Effects of Lidocaine on Exocytosis. ACS Chem Neurosci 2018; 9:2941-2947. [PMID: 29976059 DOI: 10.1021/acschemneuro.8b00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Single cell amperometry and intracellular vesicle impact electrochemical cytometry were used to examine whether lidocaine can regulate neurotransmitter release or storage for PC12 cells to explain the biphasic effects whereby it can protect neurons and improve cognitive outcome at low concentration, but can cause neurotoxicity at high concentration. We show that lidocaine affects the behavior of PC12 cell exocytosis in a concentration dependent way, which exactly corresponds to its biphasic effects. At a relatively high concentration, it shows a much narrower pore size and a longer-duration fusion pore with less monoamine released than control cells. However, at a relatively low concentration, the fusion pore is open even longer than at high concentration, and with more monoamine released than control cells. Furthermore, intracellular vesicle impact electrochemical cytometry was used to confirm that lidocaine did not change the catecholamine content of the vesicles. These data provide a mechanism for the observed biphasic effects of the drug and suggest that lidocaine influences exocytosis through multiple mechanisms.
Collapse
Affiliation(s)
- Daixin Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
31
|
Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy. Proc Math Phys Eng Sci 2018; 474:20180409. [PMID: 30839832 PMCID: PMC6237495 DOI: 10.1098/rspa.2018.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Scanning electrochemical microscopy (SECM) is a powerful and versatile technique for visualizing the local electrochemical activity of a surface as an ultramicroelectrode tip is moved towards or over a sample of interest using precise positioning systems. In comparison with other scanning probe techniques, SECM not only enables topographical surface mapping but also gathers chemical information with high spatial resolution. Considerable progress has been made in the analysis of biological samples, including living cells and immobilized biomacromolecules such as enzymes, antibodies and DNA fragments. Moreover, combinations of SECM with comple-mentary analytical tools broadened its applicability and facilitated multi-functional analysis with extended life science capabilities. The aim of this review is to present a brief topical overview on recent applications of biological SECM, with particular emphasis on important technical improvements of this surface imaging technique, recommended applications and future trends.
Collapse
Affiliation(s)
- Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
32
|
Tsierkezos NG, Ritter U, Nugraha Thaha Y, Knauer A, Fernandes D, Kelarakis A, McCarthy EK. Boron-doped multi-walled carbon nanotubes as sensing material for analysis of dopamine and epinephrine in presence of uric acid. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Vickerman BM, Anttila MM, Petersen BV, Allbritton NL, Lawrence DS. Design and Application of Sensors for Chemical Cytometry. ACS Chem Biol 2018; 13:1741-1751. [PMID: 29376326 DOI: 10.1021/acschembio.7b01009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.
Collapse
Affiliation(s)
- Brianna M. Vickerman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew M. Anttila
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brae V. Petersen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University,
Raleigh, North Carolina 27695, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David S. Lawrence
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
34
|
Wang Y, Shan X, Tao N. Emerging tools for studying single entity electrochemistry. Faraday Discuss 2018; 193:9-39. [PMID: 27722354 DOI: 10.1039/c6fd00180g] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemistry studies charge transfer and related processes at various microscopic structures (atomic steps, islands, pits and kinks on electrodes), and mesoscopic materials (nanoparticles, nanowires, viruses, vesicles and cells) made by nature and humans, involving ions and molecules. The traditional approach measures averaged electrochemical quantities of a large ensemble of these individual entities, including the microstructures, mesoscopic materials, ions and molecules. There is a need to develop tools to study single entities because a real system is usually heterogeneous, e.g., containing nanoparticles with different sizes and shapes. Even in the case of "homogeneous" molecules, they bind to different microscopic structures of an electrode, assume different conformations and fluctuate over time, leading to heterogeneous reactions. Here we highlight some emerging tools for studying single entity electrochemistry, discuss their strengths and weaknesses, and provide personal views on the need for tools with new capabilities for further advancing single entity electrochemistry.
Collapse
Affiliation(s)
- Yixian Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Xiaonan Shan
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
35
|
de Jesus Guedes T, Pio dos Santos WT. Fast and Simple Electrochemical Analysis Kit for Quality Control of Narrow Therapeutic Index Drugs. ELECTROANAL 2018. [DOI: 10.1002/elan.201800108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tiago de Jesus Guedes
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina, MG Brasil
| | - Wallans Torres Pio dos Santos
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina, MG Brasil
| |
Collapse
|
36
|
Liu S, Zheng W, Wu K, Lin Y, Jia F, Zhang Y, Wang Z, Luo Q, Zhao Y, Wang F. Correlated mass spectrometry and confocal microscopy imaging verifies the dual-targeting action of an organoruthenium anticancer complex. Chem Commun (Camb) 2018; 53:4136-4139. [PMID: 28352881 DOI: 10.1039/c7cc01503h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An addressable single cell imaging strategy combining ToF-SIMS and confocal fluorescence microscopy imaging has been developed, and sucessfully applied to visualize the subcellular distribution of an organoruthenium anticancer complex, [(η6-benzene)Ru(N,N-L)Cl]+ (1; L: 4-anilinoquinazoline ligand), showing its accumulation in both cell membrane and nuclei, and verifying its dual-targeting feature.
Collapse
Affiliation(s)
- Suyan Liu
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yu Lin
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yang Zhang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
37
|
Meyer S, López-Serrano A, Mitze H, Jakubowski N, Schwerdtle T. Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite. Metallomics 2018; 10:73-76. [DOI: 10.1039/c7mt00285h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fast and reliable single-cell ICP-MS/MS method is presented to determine the bioavailability of metal species as well as sulfur and phosphorus as internal control after re-suspension of cells in water.
Collapse
Affiliation(s)
- S. Meyer
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal
- Germany
- NutriAct – Competence Cluster Nutrition Research Berlin-Potsdam
| | - A. López-Serrano
- Bundesanstalt für Materialforschung und – prüfung (BAM)
- 12489 Berlin
- Germany
| | - H. Mitze
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal
- Germany
| | - N. Jakubowski
- Bundesanstalt für Materialforschung und – prüfung (BAM)
- 12489 Berlin
- Germany
| | - T. Schwerdtle
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal
- Germany
- NutriAct – Competence Cluster Nutrition Research Berlin-Potsdam
| |
Collapse
|
38
|
Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci 2017; 41:351-372. [PMID: 28859259 DOI: 10.1002/jssc.201700709] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
39
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
40
|
Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors. SENSORS 2017; 17:s17071521. [PMID: 28657584 PMCID: PMC5539566 DOI: 10.3390/s17071521] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/24/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023]
Abstract
Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmitters, including dopamine. This approach provides a high spatial and temporal resolution, but it is not understood if these sensors are able to distinguish dopamine from similar catecholamine neurotransmitters, such as epinephrine or norepinephrine. In this work, the organic phase (DNA sequence) around SWCNTs was varied to create sensors with different selectivity and sensitivity for catecholamine neurotransmitters. Most DNA-functionalized SWCNTs responded to catecholamine neurotransmitters, but both dissociation constants (Kd) and limits of detection were highly dependent on functionalization (sequence). Kd values span a range of 2.3 nM (SWCNT-(GC)15 + norepinephrine) to 9.4 μM (SWCNT-(AT)15 + dopamine) and limits of detection are mostly in the single-digit nM regime. Additionally, sensors of different SWCNT chirality show different fluorescence increases. Moreover, certain sensors (e.g., SWCNT-(GT)10) distinguish between different catecholamines, such as dopamine and norepinephrine at low concentrations (50 nM). These results show that SWCNTs functionalized with certain DNA sequences are able to discriminate between catecholamine neurotransmitters or to detect them in the presence of interfering substances of similar structure. Such sensors will be useful to measure and study neurotransmitter signaling in complex biological settings.
Collapse
|
41
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
42
|
Zhang J, Chen B, Wang H, He M, Hu B. Facile Chip-Based Array Monolithic Microextraction System Online Coupled with ICPMS for Fast Analysis of Trace Heavy Metals in Biological Samples. Anal Chem 2017; 89:6878-6885. [PMID: 28539046 DOI: 10.1021/acs.analchem.7b01367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trace heavy metals have great impact on biological system; therefore, it is essential to develop suitable analytical methods for the determination of trace heavy metals in biological samples to elucidate their biochemical and physiological functions in organisms. Herein, we presented a chip-based array monolithic microextraction system and combined it with inductively coupled plasma mass spectrometry (ICPMS) for online analysis of trace Hg, Pb, and Bi in real-world biological samples. Six ethylenediamine modified poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EDMA-NH2)) capillary monolithic columns were embedded parallelly in microchannels of a microfluidic chip for array monolithic microextraction. Various parameters affecting the chip-based array monolithic microextraction of target metals were investigated. The sample throughput of the proposed method was 16 h-1, with the limits of detection for Hg, Pb, and Bi of 23, 12, and 13 ng L-1, respectively. The developed method was validated by the determination of trace Hg, Pb, and Bi in HepG2 cells and human urine samples, and the recoveries for the spiked samples were in the range of 90.4-102%. This chip-based array monolithic microextraction system is easy to prepare, and the proposed online analytical system provides a new platform for trace elements analysis in biological samples with the merits of high sample throughput, high sensitivity, and low sample/reagents consumption.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
43
|
Wu K, Jia F, Zheng W, Luo Q, Zhao Y, Wang F. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging. J Biol Inorg Chem 2017; 22:653-661. [DOI: 10.1007/s00775-017-1462-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
|
44
|
Lévesque É, Bechara WS, Constantineau-Forget L, Pelletier G, Rachel NM, Pelletier JN, Charette AB. General C-H Arylation Strategy for the Synthesis of Tunable Visible Light-Emitting Benzo[a]imidazo[2,1,5-c,d]indolizine Fluorophores. J Org Chem 2017; 82:5046-5067. [PMID: 28441020 DOI: 10.1021/acs.joc.6b02928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we report the discovery of the benzo[a]imidazo[2,1,5-c,d]indolizine motif displaying tunable emission covering most of the visible spectrum. The polycyclic core is obtained from readily available amides via a chemoselective process involving Tf2O-mediated amide cyclodehydration, followed by intramolecular C-H arylation. Additionally, these fluorescent heterocycles are easily functionalized using electrophilic reagents, enabling divergent access to varied substitution. The effects of said substitution on the compounds' photophysical properties were rationalized by density functional theory calculations. For some compounds, emission wavelengths are directly correlated to the substituent's Hammett constants. Easily introduced nonconjugated reactive functional groups allow the labeling of biomolecules without modification of emissive properties. This work provides a straightforward platform for the synthesis of new moderately bright fluorescent dyes remarkable for their chemical stability, predictability, and unusually high excitation-emission differential.
Collapse
Affiliation(s)
- Éric Lévesque
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - William S Bechara
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Léa Constantineau-Forget
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Pelletier
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Natalie M Rachel
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Joelle N Pelletier
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
45
|
Hamilton JS, Aguilar R, Petros RA, Verbeck GF. DAPNe with micro-capillary separatory chemistry-coupled to MALDI-MS for the analysis of polar and non-polar lipid metabolism in one cell. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:918-928. [PMID: 28251574 DOI: 10.1007/s13361-017-1623-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
The cellular metabolome is considered to be a representation of cellular phenotype and cellular response to changes to internal or external events. Methods to expand the coverage of the expansive physiochemical properties that makeup the metabolome currently utilize multi-step extractions and chromatographic separations prior to chemical detection, leading to lengthy analysis times. In this study, a single-step procedure for the extraction and separation of a sample using a micro-capillary as a separatory funnel to achieve analyte partitioning within an organic/aqueous immiscible solvent system is described. The separated analytes are then spotted for MALDI-MS imaging and distribution ratios are calculated. Initially, the method is applied to standard mixtures for proof of partitioning. The extraction of an individual cell is non-reproducible; therefore, a broad chemical analysis of metabolites is necessary and will be illustrated with the one-cell analysis of a single Snu-5 gastric cancer cell taken from a cellular suspension. The method presented here shows a broad partitioning dynamic range as a single-step method for lipid analysis demonstrating a decrease in ion suppression often present in MALDI analysis of lipids. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jason S Hamilton
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Roberto Aguilar
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Robby A Petros
- Department of Chemistry, Texas Women's Univeristy, Denton, TX, USA
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX, USA.
| |
Collapse
|
46
|
Li L, Fan Y, Li Q, Sheng R, Si H, Fang J, Tong L, Tang B. Simultaneous Single-Cell Analysis of Na+, K+, Ca2+, and Mg2+ in Neuron-Like PC-12 Cells in a Microfluidic System. Anal Chem 2017; 89:4559-4565. [DOI: 10.1021/acs.analchem.6b05045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Yuanyuan Fan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Renjie Sheng
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Haibin Si
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Juan Fang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Lili Tong
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| |
Collapse
|
47
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
48
|
Saha-Shah A, Green CM, Abraham DH, Baker LA. Segmented flow sampling with push-pull theta pipettes. Analyst 2017; 141:1958-65. [PMID: 26907673 DOI: 10.1039/c6an00028b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report development of a mobile and easy-to-fabricate theta pipette microfluidic device for segmented flow sampling. The theta pipettes were also used as electrospray emitters for analysis of sub-nanoliter segments, which resulted in delivery of analyte to the vacuum inlet of the mass spectrometer without multiple transfer steps. Theta pipette probes enable sample collection with high spatial resolution due to micron or smaller sized probe inlets and can be used to manipulate aqueous segments in the range of 200 pL to tens of nanoliters. Optimized conditions can enable sampling with high spatial and temporal resolution, suitable for chemical monitoring in biological samples and studies of sample heterogeneity. Intercellular heterogeneity among Allium cepa cells was studied by collecting cytoplasm from multiple cells using a single probe. Extracted cytoplasm was analyzed in a fast and high throughput manner by direct electrospray mass spectrometry of segmented sample from the probe tip.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Curtis M Green
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - David H Abraham
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| |
Collapse
|
49
|
Herrmann AJ, Techritz S, Jakubowski N, Haase A, Luch A, Panne U, Mueller L. A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS. Analyst 2017; 142:1703-1710. [DOI: 10.1039/c6an02638a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods.
Collapse
Affiliation(s)
- A. J. Herrmann
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- Division 1.1 Inorganic Trace Analysis
- 12489 Berlin
- Germany
- Humboldt-Universität zu Berlin
| | - S. Techritz
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- Division 1.1 Inorganic Trace Analysis
- 12489 Berlin
- Germany
| | - N. Jakubowski
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- Division 1.1 Inorganic Trace Analysis
- 12489 Berlin
- Germany
| | - A. Haase
- Federal Institute for Risk Assessment
- Department of Chemical and Product Safety
- 10589 Berlin
- Germany
| | - A. Luch
- Federal Institute for Risk Assessment
- Department of Chemical and Product Safety
- 10589 Berlin
- Germany
| | - U. Panne
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- Division 1.1 Inorganic Trace Analysis
- 12489 Berlin
- Germany
- Humboldt-Universität zu Berlin
| | - L. Mueller
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- Division 1.1 Inorganic Trace Analysis
- 12489 Berlin
- Germany
| |
Collapse
|
50
|
|