1
|
Volpi N, Galeotti F, Gatto F. High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids. Nat Protoc 2025; 20:843-860. [PMID: 39543382 DOI: 10.1038/s41596-024-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Analysis of Normal Levels of Free Glycosaminoglycans in Urine and Plasma in Adults. J Biol Chem 2022; 298:101575. [PMID: 35007531 PMCID: PMC8888457 DOI: 10.1016/j.jbc.2022.101575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/18/2023] Open
Abstract
Plasma and urine glycosaminoglycans (GAGs) are long, linear sulfated polysaccharides that have been proposed as potential noninvasive biomarkers for several diseases. However, owing to the analytical complexity associated with the measurement of GAG concentration and disaccharide composition (the so-called GAGome), a reference study of the normal healthy GAGome is currently missing. Here, we prospectively enrolled 308 healthy adults and analyzed their free GAGomes in urine and plasma using a standardized ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry method together with comprehensive demographic and blood chemistry biomarker data. Of 25 blood chemistry biomarkers, we mainly observed weak correlations between the free GAGome and creatinine in urine and hemoglobin or erythrocyte counts in plasma. We found a higher free GAGome concentration – but not a more diverse composition - in males. Partitioned by gender, we also established reference intervals for all detectable free GAGome features in urine and plasma. Finally, we carried out a transference analysis in healthy individuals from two distinct geographical sites, including data from the Lifelines Cohort Study, which validated the reference intervals in urine. Our study is the first large-scale determination of normal free GAGomes reference intervals in plasma and urine and represents a critical resource for future physiology and biomarker research.
Collapse
|
4
|
Tamburro D, Bratulic S, Abou Shameh S, Soni NK, Bacconi A, Maccari F, Galeotti F, Mattsson K, Volpi N, Nielsen J, Gatto F. Analytical performance of a standardized kit for mass spectrometry-based measurements of human glycosaminoglycans. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122761. [PMID: 34052753 DOI: 10.1016/j.jchromb.2021.122761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycans (GAGs) are long linear sulfated polysaccharides implicated in processes linked to disease development such as mucopolysaccharidosis, respiratory failure, cancer, and viral infections, thereby serving as potential biomarkers. A successful clinical translation of GAGs as biomarkers depends on the availability of standardized GAG measurements. However, owing to the analytical complexity associated with the quantification of GAG concentration and structural composition, a standardized method to simultaneously measure multiple GAGs is missing. In this study, we sought to characterize the analytical performance of a ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS)-based kit for the quantification of 17 free GAG disaccharides. The kit showed acceptable linearity, selectivity and specificity, accuracy and precision, and analyte stability in the absolute quantification of 15 disaccharides. In native human samples, here using urine as a reference matrix, the analytical performance of the kit was acceptable for the quantification of CS disaccharides. Intra- and inter-laboratory tests performed in an external laboratory demonstrated robust reproducibility of GAG measurements showing that the kit was acceptably standardized. In conclusion, these results indicated that the UHPLC-MS/MS kit was standardized for the simultaneous measurement of free GAG disaccharides allowing for comparability of measurements and enabling translational research.
Collapse
Affiliation(s)
| | - Sinisa Bratulic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Nikul K Soni
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; BioInnovation Institute, DK 2200 Copenhagen, Denmark
| | - Francesco Gatto
- Elypta AB, 171 65 Solna, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
5
|
Composition and structure of glycosaminoglycans in DBS from 2-3-day-old newborns for the diagnosis of mucopolysaccharidosis. Anal Biochem 2018; 557:34-41. [DOI: 10.1016/j.ab.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
|
6
|
Gordts PLSM, Esko JD. The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. Matrix Biol 2018; 71-72:262-282. [PMID: 29803939 DOI: 10.1016/j.matbio.2018.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk factors such as hyperlipidemia and inflammation that drive the initiation and progression of atherosclerotic plaques to their clinical critical endpoint.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA.
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Miller RL, Guimond SE, Prescott M, Turnbull JE, Karlsson N. Versatile Separation and Analysis of Heparan Sulfate Oligosaccharides Using Graphitized Carbon Liquid Chromatography and Electrospray Mass Spectrometry. Anal Chem 2017; 89:8942-8950. [DOI: 10.1021/acs.analchem.7b01417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
- Oncology
Department, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Mark Prescott
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Niclas Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| |
Collapse
|
8
|
Miller RL, Guimond SE, Shivkumar M, Blocksidge J, Austin JA, Leary JA, Turnbull JE. Heparin Isomeric Oligosaccharide Separation Using Volatile Salt Strong Anion Exchange Chromatography. Anal Chem 2016; 88:11542-11550. [DOI: 10.1021/acs.analchem.6b02801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
- Departments
of Molecular and Cellular Biology and Chemistry, University of California, 1 Shields Drive, Davis, California 95616, United States
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Maitreyi Shivkumar
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jemma Blocksidge
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - James A. Austin
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Julie A. Leary
- Departments
of Molecular and Cellular Biology and Chemistry, University of California, 1 Shields Drive, Davis, California 95616, United States
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
9
|
Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis. Anal Bioanal Chem 2016; 409:1257-1269. [DOI: 10.1007/s00216-016-0052-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
|
10
|
Robinson MR, Brodbelt JS. Integrating Weak Anion Exchange and Ultraviolet Photodissociation Mass Spectrometry with Strategic Modulation of Peptide Basicity for the Enrichment of Sulfopeptides. Anal Chem 2016; 88:11037-11045. [PMID: 27768275 DOI: 10.1021/acs.analchem.6b02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tyrosine sulfation is an important post-translational modification but remains difficult to detect in biological samples owing to its low stoichiometric abundance and the lack of effective enrichment methods. In the present study, weak anion exchange (WAX) is evaluated for the enrichment of sulfopeptides that have been modified via carbamylation to convert all primary amines to less basic carbamates. The decrease in basicity enhanced the binding of carbamylated sulfopeptides to WAX resin relative to nonsulfated peptides. Upon elution and electrospray ionization in the negative mode, ultraviolet photodissociation (UVPD) was applied for peptide sequencing. Application of the method to a tryptic digest of bovine coagulation factor V resulted in identification of sulfation on tyrosine 1513.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Chemistry, The University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
11
|
Du JY, Chen LR, Liu S, Lin JH, Liang QT, Lyon M, Wei Z. Ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for the structural analysis of N-unsubstituted heparin/heparan sulfate. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:71-76. [DOI: 10.1016/j.jchromb.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/30/2022]
|
12
|
Meneghetti MCZ, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. Heparan sulfate and heparin interactions with proteins. J R Soc Interface 2016; 12:0589. [PMID: 26289657 DOI: 10.1098/rsif.2015.0589] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure-activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure-activity relationships and regulation will be discussed.
Collapse
Affiliation(s)
- Maria C Z Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Ashley J Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Hertfordshire EN6 3QC, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Marcelo A Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
13
|
A novel LC-MS/MS assay for heparan sulfate screening in the cerebrospinal fluid of mucopolysaccharidosis IIIA patients. Bioanalysis 2016; 8:285-95. [PMID: 26847798 DOI: 10.4155/bio.15.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIMS Heparan sulfate (HS) accumulates in the central nervous system in mucopolysaccharidosis III type A (MPS IIIA). A validated LC-MS/MS assay was developed to measure HS in human cerebrospinal fluid (CSF). METHODS & RESULTS HS was extracted and digested and the resultant disaccharides were derivatized with a novel label, 4-butylaniline, enabling isoform separation and isotope-tagged analog introduction as an internal standard for LC-MS/MS. The assay has a LLOQ for disaccharides of 0.1 μM, ±20% accuracy and ≤20% precision. CSF samples from patients with MPS IIIA showed elevated HS levels (mean 4.9 μM) compared with negative controls (0.37 μM). CONCLUSION This assay detected elevated HS levels in the CSF of patients with MPS IIIA and provides a method to assess experimental therapies.
Collapse
|
14
|
Gordts PLSM, Esko JD. Heparan sulfate proteoglycans fine-tune macrophage inflammation via IFN-β. Cytokine 2015; 72:118-9. [PMID: 25573804 DOI: 10.1016/j.cyto.2014.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023]
Abstract
Macrophages are important mediators of diseases associated with metabolic inflammation such as obesity and atherosclerosis. In this Stimulus we discuss recent findings showing that heparan sulfate proteoglycans on macrophages serve as an important inflammatory rheostat. This observation has significant implications as the degree of macrophage proteoglycan sulfation can determine and possibly predict disease outcomes of metabolic inflammatory disorders.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
15
|
Stavenhagen K, Kolarich D, Wuhrer M. Clinical Glycomics Employing Graphitized Carbon Liquid Chromatography-Mass Spectrometry. Chromatographia 2014; 78:307-320. [PMID: 25750456 PMCID: PMC4346670 DOI: 10.1007/s10337-014-2813-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/25/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022]
Abstract
Glycoconjugates and free glycan are involved in a variety of biological processes such as cell-cell interaction and cell trafficking. Alterations in the complex glycosylation machinery have been correlated with various pathological processes including cancer progression and metastasis. Mass Spectrometry (MS) has evolved as one of the most powerful tools in glycomics and glycoproteomics and in combination with porous graphitized carbon-liquid chromatography (PGC-LC) it is a versatile and sensitive technique for the analysis of glycans and to some extent also glycopeptides. PGC-LC-ESI-MS analysis is characterized by a high isomer separation power enabling a specific glycan compound analysis on the level of individual structures. This allows the investigation of the biological relevance of particular glycan structures and glycan features. Consequently, this strategy is a very powerful technique suitable for clinical research, such as cancer biomarker discovery, as well as in-depth analysis of recombinant glycoproteins. In this review, we will focus on how PGC in conjunction with MS detection can deliver specific structural information for clinical research on protein-bound N-glycans and mucin-type O-glycans. In addition, we will briefly review PGC analysis approaches for glycopeptides, glycosaminoglycans (GAGs) and human milk oligosaccharides (HMOs). The presented applications cover systems that vary vastly with regard to complexity such as purified glycoproteins, cells, tissue or body fluids revealing specific glycosylation changes associated with various biological processes including cancer and inflammation.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1 OT Golm, 14242 Potsdam, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands ; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands ; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Sabol JK, Wei W, López-Hoyos M, Seo Y, Andaya A, Leary JA. Heparan sulfate differences in rheumatoid arthritis versus healthy sera. Matrix Biol 2014; 40:54-61. [PMID: 25217862 DOI: 10.1016/j.matbio.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future.
Collapse
Affiliation(s)
- Jenny K Sabol
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Marcos López-Hoyos
- Immunology Section. Hospital Universitario Marques de Valdecilla-IDIVAL, Santander 39008, SPAIN
| | - Youjin Seo
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Armann Andaya
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Julie A Leary
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA.,Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
17
|
Schmidt EP, Li G, Li L, Fu L, Yang Y, Overdier KH, Douglas IS, Linhardt RJ. The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J Biol Chem 2014; 289:8194-202. [PMID: 24509853 DOI: 10.1074/jbc.m113.539452] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic inflammatory illnesses (such as sepsis) are marked by degradation of the endothelial glycocalyx, a layer of glycosaminoglycans (including heparan sulfate, chondroitin sulfate, and hyaluronic acid) lining the vascular lumen. We hypothesized that different pathophysiologic insults would produce characteristic patterns of released glycocalyx fragments. We collected plasma from healthy donors as well as from subjects with respiratory failure due to altered mental status (intoxication, ischemic brain injury), indirect lung injury (non-pulmonary sepsis, pancreatitis), or direct lung injury (aspiration, pneumonia). Mass spectrometry was employed to determine the quantity and sulfation patterns of circulating glycosaminoglycans. We found that circulating heparan sulfate fragments were significantly (23-fold) elevated in patients with indirect lung injury, while circulating hyaluronic acid concentrations were elevated (32-fold) in patients with direct lung injury. N-Sulfation and tri-sulfation of heparan disaccharides were significantly increased in patients with indirect lung injury. Chondroitin disaccharide sulfation was suppressed in all groups with respiratory failure. Plasma heparan sulfate concentrations directly correlated with intensive care unit length of stay. Serial plasma measurements performed in select patients revealed that circulating highly sulfated heparan fragments persisted for greater than 3 days after the onset of respiratory failure. Our findings demonstrate that circulating glycosaminoglycans are elevated in patterns characteristic of the etiology of respiratory failure and may serve as diagnostic and/or prognostic biomarkers of critical illness.
Collapse
Affiliation(s)
- Eric P Schmidt
- From the Program in Translational Lung Research, Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | | | | | | | | | | | | | |
Collapse
|