1
|
Fijalkowski M, Ali A, Qamer S, Coufal R, Adach K, Petrik S. Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review. Gels 2023; 10:4. [PMID: 38275842 PMCID: PMC10815221 DOI: 10.3390/gels10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.
Collapse
Affiliation(s)
- Mateusz Fijalkowski
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Azam Ali
- Department of Material Science, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Shafqat Qamer
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Radek Coufal
- Department of Science and Research, Faulty of Health Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Kinga Adach
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Stanislav Petrik
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
2
|
Zhang Y, Li S, Liu H, Shi F, Li J, Hu X, Yang Z. Dual-strategy biosensing of glucose based on multifunctional CuWO 4 nanoparticles. Analyst 2022; 147:4049-4054. [DOI: 10.1039/d2an01003h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multifunctional CuWO4 NPs were prepared and exhibit large specific surface area, good conductivity and excellent peroxidase-like activity, which was exploited for electrochemical and colorimetric dual-strategy biosensing of glucose.
Collapse
Affiliation(s)
- Yu Zhang
- School of Nursing, Yangzhou University, Yangzhou 225000, PR China
| | - Shuang Li
- School of Nursing, Yangzhou University, Yangzhou 225000, PR China
| | - Hongyuan Liu
- School of Nursing, Yangzhou University, Yangzhou 225000, PR China
| | - Feng Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Juan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
3
|
Heteroatom-doped Co-MOF derivative enhancing immobilization and activity of two enzymes for small-molecules electrochemical determination. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Jõul P, Vaher M, Kuhtinskaja M. Carbon aerogel-based solid-phase microextraction coating for the analysis of organophosphorus pesticides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:69-76. [PMID: 33290461 DOI: 10.1039/d0ay02002h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The current study is focused on the in situ synthesis of a carbon aerogel (CA)-based solid-phase microextraction (SPME) fiber coating on stainless steel wire and evaluation of the suitability of CAs as SPME coating materials for the analysis of selected organophosphorus pesticides (OPPs) contained in environmental samples. A CA-based coating was obtained by pyrolyzing organic aerogels, which were prepared by the sol-gel polymerization of formaldehyde and 5-methylresorcinol, an oil shale processing by-product. The results demonstrated, for the first time, the in situ synthesis of a CA-based SPME fiber coating on stainless steel wire and its suitability for the extraction and preconcentration of six OPPs. Main parameters affecting the extraction efficiency were investigated and optimized. The direct immersion (DI)-SPME procedure combined with gas chromatography-mass spectrometry (GC-MS) for the simultaneous analysis of selected OPPs was successfully applied to the efficient and sensitive determination of analytes of interest in environmental matrices of honey and natural water samples. The developed CA-coated SPME fiber showed good linearity (R2 = 0.981-0.994), low detection limits (0.11-0.83 μg L-1) and satisfactory single fiber and fiber-to-fiber reproducibilities (8.8-12.3%, n = 5 and 11.4-17.2%, n = 3). The performance of the CA-coating was compared with that of commercially available SPME fiber coatings.
Collapse
Affiliation(s)
- Piia Jõul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| | | | | |
Collapse
|
5
|
Electrochemical non-enzymatic glucose sensor using ionic liquid incorporated cobalt-based metal-organic framework. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/11/2020] [Indexed: 05/23/2023]
Abstract
Sensors are of increasing interest since they can be applied to daily life in different areas from various industrial sectors. As a natural nanomaterial, nanocellulose plays a vital role in the development of novel sensors, particularly in the context of constructing multidimensional architectures. This review summarizes the utilization of nanocellulose including cellulose nanofibers, cellulose nanocrystals, and bacterial cellulose for sensor design, mainly focusing on the influence of nanocellulose on the sensing performance of these sensors. Special attention is paid to nanocellulose in different forms (1D, 2D, and 3D) to highlight the impact of nanocellulose constructed structures. The aim is to provide a critical review on the most recent progress (especially after 2017) related to nanocellulose-containing sensors, since there are significantly increasing research activities in this area. Moreover, the outlook for the development of nanocellulose-containing sensors is also provided at the end of this work.
Collapse
Affiliation(s)
- Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xuejun Zou
- FPInnovations, 570 boul. St-Jean, Pointe-Claire, Quebec, H9R3J9, Canada
| | - Zhirong Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
7
|
Dong S, Li Z, Fu Y, Zhang G, Zhang D, Tong M, Huang T. Bimetal-organic framework Cu-Ni-BTC and its derivative CuO@NiO: Construction of three environmental small-molecule electrochemical sensors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Yang J, Li Y, Zheng Y, Xu Y, Zheng Z, Chen X, Liu W. Versatile Aerogels for Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902826. [PMID: 31475442 DOI: 10.1002/smll.201902826] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/02/2019] [Indexed: 05/27/2023]
Abstract
Aerogels are unique solid-state materials composed of interconnected 3D solid networks and a large number of air-filled pores. They extend the structural characteristics as well as physicochemical properties of nanoscale building blocks to macroscale, and integrate typical characteristics of aerogels, such as high porosity, large surface area, and low density, with specific properties of the various constituents. These features endow aerogels with high sensitivity, high selectivity, and fast response and recovery for sensing materials in sensors such as gas sensors, biosensors and strain and pressure sensors, among others. Considerable research efforts in recent years have been devoted to the development of aerogel-based sensors and encouraging accomplishments have been achieved. Herein, groundbreaking advances in the preparation, classification, and physicochemical properties of aerogels and their sensing applications are presented. Moreover, the current challenges and some perspectives for the development of high-performance aerogel-based sensors are summarized.
Collapse
Affiliation(s)
- Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yi Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Niu P, Gich M, Roig A, Fernández-Sánchez C. Metal Nanoparticle Carbon Gel Composites in Environmental Water Sensing Applications. CHEM REC 2018; 18:749-758. [PMID: 29806230 DOI: 10.1002/tcr.201800011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 11/11/2022]
Abstract
The synthesis of organic-inorganic nanocomposites that can interact with different environmental pollutants and can be mass-produced are very promising materials for the fabrication of chemical sensor devices. Among them, metal (or metal oxide) nanoparticles doped conductive porous carbon composites can be readily applied to the production of electrochemical sensors and show enhanced sensitivity for the measurement of water pollutants, thanks to the abundant accessible and functional sites provided by the interconnected porosity and the metallic nanoparticles, respectively. In this personal account, an overview of several synthesis routes of porous carbon composites containing metallic nanoparticles is given, paying special attention to those based on sol-gel techniques. These are very powerful to synthesize hybrid porous materials that can be easily processed into powders and thin films, so that they can be implemented in electrode fabrication processes based on screen-printing and lithography techniques, respectively. We emphasize the sol-gel routes developed in our group for the synthesis of bismuth or gold nanoparticle doped porous carbon composites applied to fabricate electrochemical sensors that can be scaled down to produce miniaturized on-chip sensing devices for the sensitive detection of heavy metal pollutants in water. The trend towards the miniaturization of electrochemical sensors to be readily employed as analytical tools in environmental monitoring follow the market requirements of rapid and accurate on-site analysis, small sample consumption and waste production, as well as potential for continuous or semi-continuous in-situ determination of a wide variety of target analytes.
Collapse
Affiliation(s)
- Pengfei Niu
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, 300072, Tianjin, China
| | - Martí Gich
- Institut de Ciència de Materials de Barcelona, ICMAB (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193, Bellaterra, Spain
| |
Collapse
|
10
|
Zhang X, Wang Y, Ning X, Li L, Chen J, Shan D, Gao R, Lu X. Three-dimensional porous self-assembled chestnut-like nickel-cobalt oxide structure as an electrochemical sensor for sensitive detection of hydrazine in water samples. Anal Chim Acta 2018; 1022:28-36. [PMID: 29729735 DOI: 10.1016/j.aca.2018.03.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Three-dimensional NiCo2O4 is a kind of superior sensing material owing to its high electron transfer capability, large available surface area and numbers of active sites. In this work, NiCo2O4 of the three-dimensional chestnut-like structure were easily achieved through a one step hydrothermal process. Afterwards, the morphology and structure were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Based on the three-dimensional porous chestnut-like NiCo2O4, an electrochemical sensor for hydrazine (N2H4) detection is fabricated. This electrochemical platform can realize good selectivity, excellent stability, high sensitivity (∼2154.4 μA mM-1 cm-2), and low detection limit (0.3 μM), as well as a wide linear range from 1 μM to 1096 μM. The synergistic effect of nickel-cobalt in such mixed transition metal oxides which Co in Co3O4 is partially replaced by Ni are beneficial for enhancing sensing properties. This study proves that three-dimensional porous chestnut-like NiCo2O4 is electrochemically active for catalytic performance which is particular and promising material for good application in the practical detection of N2H4.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yanfeng Wang
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300072, PR China
| | - Linfang Li
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Jing Chen
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Duoliang Shan
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Ruiqin Gao
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China; Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
11
|
Carbon cloth-supported cobalt phosphide as an active matrix for constructing enzyme-based biosensor. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-017-3864-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Enhanced direct electron transfer of glucose oxidase based on gold nanoprism and its application in biosensing. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Walcarius A. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1863. [PMID: 28800106 PMCID: PMC5579580 DOI: 10.3390/s17081863] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors.
Collapse
Affiliation(s)
- Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie Pour l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France.
| |
Collapse
|
14
|
Rajkumar C, Veerakumar P, Chen SM, Thirumalraj B, Liu SB. Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. NANOSCALE 2017; 9:6486-6496. [PMID: 28466933 DOI: 10.1039/c7nr00967d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Highly stable palladium nanoparticles (Pd NPs) supported on a porous carbon aerogel (Pd/CA) prepared by a facile microwave reduction route is reported. The as-prepared Pd/CA composites were characterized by various techniques, viz. XRD, Raman, SEM-EDX, FE-TEM, BET, and TGA. The Pd NPs were found to disperse uniformly in the porous carbon matrix, which possesses a large surface area (851.8 m2 g-1) and pore volume (3.021 cm3 g-1). The Pd/CA composite was found to possess extraordinary electrocatalytic activity and excellent selectivity for simultaneous detection of dopamine (DA) and melatonin (ML). The Pd/CA-modified electrode exhibited a wide linear response range for electrochemical sensing of DA (0.01-100 μM) and ML (0.02-500 μM) with a detection limit of 0.0026 and 0.0071 μM, respectively. In addition, the electrochemical sensor reported herein was successfully applied for the detection of DA and ML in human serum and urine samples, revealing perspective practical applications.
Collapse
Affiliation(s)
- Chellakannu Rajkumar
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| | | | | | | | | |
Collapse
|
15
|
Zhang D, Ouyang X, Li L, Dai B, Zhang Y. Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Edwards JV, Fontenot KR, Prevost NT, Pircher N, Liebner F, Condon BD. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1789. [PMID: 27792201 PMCID: PMC5134448 DOI: 10.3390/s16111789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Nanocellulosic aerogels (NA) provide a lightweight biocompatible material with structural properties, like interconnected high porosity and specific surface area, suitable for biosensor design. We report here the preparation, characterization and activity of peptide-nanocellulose aerogels (PepNA) made from unprocessed cotton and designed with protease detection activity. Low-density cellulosic aerogels were prepared from greige cotton by employing calcium thiocyanate octahydrate/lithium chloride as a direct cellulose dissolving medium. Subsequent casting, coagulation, solvent exchange and supercritical carbon dioxide drying afforded homogeneous cellulose II aerogels of fibrous morphology. The cotton-based aerogel had a porosity of 99% largely dominated by mesopores (2-50 nm) and an internal surface of 163 m²·g-1. A fluorescent tripeptide-substrate (succinyl-alanine-proline-alanine-4-amino-7-methyl-coumarin) was tethered to NA by (1) esterification of cellulose C6 surface hydroxyl groups with glycidyl-fluorenylmethyloxycarbonyl (FMOC), (2) deprotection and (3) coupling of the immobilized glycine with the tripeptide. Characterization of the NA and PepNA included techniques, such as elemental analysis, mass spectral analysis, attenuated total reflectance infrared imaging, nitrogen adsorption, scanning electron microscopy and bioactivity studies. The degree of substitution of the peptide analog attached to the anhydroglucose units of PepNA was 0.015. The findings from mass spectral analysis and attenuated total reflectance infrared imaging indicated that the peptide substrate was immobilized on to the surface of the NA. Nitrogen adsorption revealed a high specific surface area and a highly porous system, which supports the open porous structure observed from scanning electron microscopy images. Bioactivity studies of PepNA revealed a detection sensitivity of 0.13 units/milliliter for human neutrophil elastase, a diagnostic biomarker for inflammatory diseases. The physical properties of the aerogel are suitable for interfacing with an intelligent protease sequestrant wound dressing.
Collapse
Affiliation(s)
- J Vincent Edwards
- Southern Regional Research Center, USDA, New Orleans, LA 70124, USA.
| | | | | | - Nicole Pircher
- Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, Tulln an der Donau A-3430, Austria.
| | - Falk Liebner
- Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, Tulln an der Donau A-3430, Austria.
| | - Brian D Condon
- Southern Regional Research Center, USDA, New Orleans, LA 70124, USA.
| |
Collapse
|
17
|
An convenient strategy for IgG electrochemical immunosensor: the platform of topological insulator materials Bi2Se3 and ionic liquid. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3420-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv Colloid Interface Sci 2016; 236:1-27. [PMID: 27321857 DOI: 10.1016/j.cis.2016.05.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023]
Abstract
Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.
Collapse
|
19
|
Liu D, Chen T, Zhu W, Cui L, Asiri AM, Lu Q, Sun X. Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection. NANOTECHNOLOGY 2016; 27:33LT01. [PMID: 27386800 DOI: 10.1088/0957-4484/27/33/33lt01] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this letter, we demonstrate for the first time that cobalt phosphide nanowires (CoP NWs) exhibit remarkable catalytic activity toward electrochemical detection of hydrogen peroxide (H2O2). As an enzymeless H2O2 sensor, such CoP NWs show a fast amperometric response within 5 s and a low detection limit of 0.48 μM. In addition, this nonenzymatic sensor displays good selectivity, long-term stability and excellent reproducibility.
Collapse
Affiliation(s)
- Danni Liu
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People's Republic of China. Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Liao SH, Lu SY, Bao SJ, Yu YN, Wang MQ. NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation. Anal Chim Acta 2016; 905:72-8. [DOI: 10.1016/j.aca.2015.12.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 11/16/2022]
|
21
|
Wu D, Xu Z, Zhang T, Shao Y, Xi P, Li H, Xu C. Cu2O/CuO@rGO heterostructure derived from metal–organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H2O2 sensor. RSC Adv 2016. [DOI: 10.1039/c6ra23551d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A hybrid heterostructure comprising well-dispersed Cu2O/CuO particles and reduced graphene oxide (rGO) is synthesized by calcinating a mixture of MOFs-118 and GO in nitrogen atmosphere to improve the sensitivity and selectivity of H2O2 sensors.
Collapse
Affiliation(s)
- Duoming Wu
- The First Hospital of Lan Zhou University
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Zhaodong Xu
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Ting Zhang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yubo Shao
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Hua Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- School of Physical Science and Technology
- Lanzhou University
- Lanzhou 730000
- China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
22
|
Dong S, Huang G, Su M, Huang T. Environmentally Friendly Method: Development and Application to Carbon Aerogel as Sorbent for Solid-Phase Extraction. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22256-22263. [PMID: 26389684 DOI: 10.1021/acsami.5b05241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed two simple, fast, and environmentally friendly methods using carbon aerogel (CA) and magnetic CA (mCA) materials as sorbents for micro-solid-phase extraction (μ-SPE) and magnetic solid-phase extraction (MSPE) techniques. The material performances such as adsorption isotherm, adsorption kinetics, and specific surface area were discussed by N2 adsorption-desorption isotherm measurements, ultraviolet and visible (UV-vis) spectrophotometry, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). The experimental results proved that the heterogeneities of CA and mCA were well modeled with the Freundlich isotherm model, and the sorption process well followed the pseudo-second-order rate equation. Moreover, plant growth regulators (PGRs) such as kinetin (6-KT), 6-benzylaminopurine (6-BA), 2,4-dichlorophenoxyacetic acid (2,4-D), and uniconazole (UN) in a reservoir raw water sample were selected as the evaluation of applicability for the proposed μ-SPE and MSPE techniques using high performance liquid chromatography (HPLC). The experimental conditions of two methods such as the amount of sorbent, extraction time, pH, salt concentration, and desorption conditions were studied. Under the optimized conditions, two extraction methods provided high recoveries (89-103%), low the limits of detection (LODs) (0.01-0.2 μg L(-1)), and satisfactory analytical features in terms of precision (relative standard deviation, RSD, 1.7-5.1%, n=3). This work demonstrates the feasibility and the potential of CA and mCA materials as sorbents for μ-SPE and MSPE techniques. Besides, it also could serve as a basis for future development of other functional CAs in pretreatment technology and make them valuable for analysis of pollutants in environmental applications.
Collapse
Affiliation(s)
- Sheying Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology , Xi'an, Shaanxi 710055, People's Republic of China
- College of Sciences, Xi'an University of Architecture and Technology , Xi'an, Shaanxi 710055, People's Republic of China
| | - Guiqi Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology , Xi'an, Shaanxi 710055, People's Republic of China
| | - Meiling Su
- College of Sciences, Xi'an University of Architecture and Technology , Xi'an, Shaanxi 710055, People's Republic of China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology , Xi'an, Shaanxi 710055, People's Republic of China
| |
Collapse
|
23
|
An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1519-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Li M, Dong S, Li N, Tang H, Zheng J. Magnetic Fe3O4 carbon aerogel and ionic liquid composite films as an electrochemical interface for accelerated electrochemistry of glucose oxidase and myoglobin. RSC Adv 2015. [DOI: 10.1039/c4ra13400a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesized magnetic ferroferric oxide carbon aerogel (Fe3O4-CA) was characterized by scanning electron microscope (SEM), atomic force microscopy (AFM) and N2 adsorption–desorption isotherm measurements.
Collapse
Affiliation(s)
- Miao Li
- College of Sciences
- Xi′an University of Architecture and Technology
- Xi′an
- China
| | - Sheying Dong
- College of Sciences
- Xi′an University of Architecture and Technology
- Xi′an
- China
| | - Nan Li
- Xi′an Chuanglian Huate Surface Treatment Tech. Co. Ltd
- Xi′an 710055
- China
| | - Hongsheng Tang
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi’an 710069
- China
| | - Jianbin Zheng
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi’an 710069
- China
| |
Collapse
|
25
|
Zhang B, He Y, Liu B, Tang D. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay. Anal Chim Acta 2014; 851:49-56. [DOI: 10.1016/j.aca.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
|
26
|
Peng L, Dong S, Xie H, Gu G, He Z, Lu J, Huang T. Sensitive simultaneous determination of diethylstilbestrol and bisphenol A based on Bi2WO6 nanoplates modified carbon paste electrode. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Yin Y, Huang P, Han Z, Wei G, Zhou C, Wen J, Su B, Wang X, Wang Y. Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway. Biomacromolecules 2014; 15:2449-60. [PMID: 24955924 DOI: 10.1021/bm500321h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neural stem cells (NSCs) are deemed to be a potential cell therapy for brain and spinal cord reconstruction and regeneration following injury. In this study, we investigated the role of nanofibrous scaffolds on NSCs-derived neurons in the formation of neural networks. Miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole-cell patch clamp recording method after the spinal cord-derived NSCs were differentiated into neurons and cultured in vitro for 10-14 days. It was observed that the frequency of mEPSCs in the differentiated neurons cultured on both randomly oriented and aligned collagen nanofibrous scaffolds was higher than that on the collagen-coated control and can be inhibited by an ERK inhibitor (PD98059), indicating that the collagen nanofibers affected the maturation of the synapses from presynaptic sites via the MAPK/ERK1/2 pathway. In addition, both of the collagen nanofibers increased the phosphorylation of Synapsin I and facilitated the interaction of p-ERK1/2 and p-Synapsin I. All these results suggested that the collagen nanofibrous scaffolds contributed to the presynaptic maturation via the ERK1/2-Synapsin I signaling pathway.
Collapse
Affiliation(s)
- Yanling Yin
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University , Beijing 100069, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dong S, Peng L, Liu D, Yang Q, Huang T. Design synthesis of polypyrrole-Co3O4 hybrid material for the direct electrochemistry of Hemoglobin and Glucose Oxidase. Bioelectrochemistry 2014; 98:87-93. [PMID: 24768801 DOI: 10.1016/j.bioelechem.2014.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022]
Abstract
We designed and synthesized a novel organic-inorganic hybrid material polypyrrole-Co3O4 (Ppy-Co3O4), then mixed it with ionic liquid (IL) to form stable composite films for the immobilization of Hemoglobin (Hb) and Glucose Oxidase (GOD). The combination of Ppy and Co3O4 as well as IL created a platform with exceptional characteristics, and the content of Ppy had an effect on the direct electron transfer (DET) of Hb/GOD. Notably, when weight percentage of pyrrole monomer was 20%, the heterogenous electron transfer rate constant (ks) for Hb and GOD was estimated to be 1.71s(-1) and 1.67s(-1), respectively. In the meantime, electrochemical and spectroscopic measurements showed that Hb/GOD remained their bioactivity, and achieved fast electron transfer on the Ppy-Co3O4/IL composite film modified electrode. Furthermore, the Ppy-Co3O4/IL/Hb composite film modified electrode was used as a biosensor, and exhibited a long linear range and lower detection limit to H2O2. The apparent Michaelis-Menten constant (Km) was found to be 0.53mM. The sensing design based on the Ppy-Co3O4 hybrid material was demonstrated to be effective and promising in developing protein and enzyme biosensors.
Collapse
Affiliation(s)
- Sheying Dong
- College of Sciences, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lei Peng
- College of Sciences, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dan Liu
- College of Sciences, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiangxu Yang
- College of Sciences, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|