1
|
Chan CC, Abu Bakar NH, Raju CM, Urban PL. Computer Vision-Assisted Robotized Sampling of Volatile Organic Compounds. Anal Chem 2024; 96:16307-16314. [PMID: 39324688 PMCID: PMC11483429 DOI: 10.1021/acs.analchem.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
In conventional chemical analysis, samples are homogenized, extracted, purified, and injected into an analytical instrument manually or with a certain degree of automation. Such complex methods can provide superior performance in terms of sensitivity or selectivity. However, in some cases, it would be advantageous to possess a method that circumvents those preparatory steps, which require much attention. Here, we present a facile analytical approach to sampling volatile organic compounds (VOCs). Solid specimens emitting VOCs can be dropped onto the drop-off zone at a random position without any special alignment. A computer vision system recognizes specimen position, and a robotic arm places a sampling probe in the proximity of the specimen. The probe aspirates the VOCs─emitted by the specimen─with the aid of a suction force. A portion of the gaseous extract is transferred to the tritium-based ion source of a drift-tube ion mobility spectrometer. The ion mobility spectrum is immediately displayed in the customized graphical user interface (GUI). The sampling system also features a function for flushing extract ducts with hot nitrogen gas. Multiple specimens can be dropped for analysis at the same time. In one embodiment, the system can distinguish fresh meat from spoiled meat. When two meat specimens are placed on the drop-off zone, they are immediately sampled by the robotic arm, analyzed, and labeled on the digital image displayed on the GUI. Thus, the developed autosampling platform provides a hassle-free way of qualitative or semiquantitative analysis of raw specimens.
Collapse
Affiliation(s)
- Ching-Chi Chan
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Noor Hidayat Abu Bakar
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Chamarthi Maheswar Raju
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Juliano BR, Keating JW, Li HW, Anders AG, Xie Z, Ruotolo BT. Development of an Automated, High-Throughput Methodology for Native Mass Spectrometry and Collision-Induced Unfolding. Anal Chem 2023; 95:16717-16724. [PMID: 37924308 PMCID: PMC11081713 DOI: 10.1021/acs.analchem.3c03788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Native ion mobility mass spectrometry (nIM-MS) has emerged as a useful technology for the rapid evaluation of biomolecular structures. When combined with collisional activation in a collision-induced unfolding (CIU) experiment, nIM-MS experimentation can be leveraged to gain greater insight into biomolecular conformation and stability. However, nIM-MS and CIU remain throughput limited due to nonautomated sample preparation and introduction. Here, we explore the use of a RapidFire robotic sample handling system to develop an automated, high-throughput methodology for nMS and CIU. We describe native RapidFire-MS (nRapidFire-MS) capable of performing online desalting and sample introduction in as little as 10 s per sample. When combined with CIU, our nRapidFire-MS approach can be used to collect CIU fingerprints in 30 s following desalting by using size exclusion chromatography cartridges. When compared to nMS and CIU data collected using standard approaches, ion signals recorded by nRapidFire-MS exhibit identical ion collision cross sections, indicating that the same conformational populations are tracked by the two approaches. Our data further suggest that nRapidFire-MS can be extended to study a variety of biomolecular classes, including proteins and protein complexes ranging from 5 to 300 kDa and oligonucleotides. Furthermore, nRapidFire-MS data acquired for biotherapeutics suggest that nRapidFire-MS has the potential to enable high-throughput nMS analyses of biopharmaceutical samples. We conclude by discussing the potential of nRapidFire-MS for enabling the development of future CIU assays capable of catalyzing breakthroughs in protein engineering, inhibitor discovery, and formulation development for biotherapeutics.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna G Anders
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhuoer Xie
- Attribute Sciences, Process Development, Amgen, Thousand Oaks, California 91320, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Eschweiler JD, Frank AT, Ruotolo BT. Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1991-2000. [PMID: 28752478 PMCID: PMC5693686 DOI: 10.1007/s13361-017-1757-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 05/21/2023]
Abstract
Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Aaron T Frank
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Bornschein RE, Niu S, Eschweiler J, Ruotolo BT. Ion Mobility-Mass Spectrometry Reveals Highly-Compact Intermediates in the Collision Induced Dissociation of Charge-Reduced Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:41-49. [PMID: 26323618 DOI: 10.1007/s13361-015-1250-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
Protocols that aim to construct complete models of multiprotein complexes based on ion mobility and mass spectrometry data are becoming an important element of integrative structural biology efforts. However, the usefulness of such data is predicated, in part, on an ability to measure individual subunits removed from the complex while maintaining a compact/folded state. Gas-phase dissociation of intact complexes using collision induced dissociation is a potentially promising pathway for acquiring such protein monomer size information, but most product ions produced are possessed of high charge states and elongated/string-like conformations that are not useful in protein complex modeling. It has previously been demonstrated that the collision induced dissociation of charge-reduced protein complexes can produce compact subunit product ions; however, their formation mechanism is not well understood. Here, we present new experimental evidence for the avidin (64 kDa) and aldolase (157 kDa) tetramers that demonstrates significant complex remodeling during the dissociation of charge-reduced assemblies. Detailed analysis and modeling indicates that highly compact intermediates are accessed during the dissociation process by both complexes. Here, we present putative pathways that describe the formation of such ions, as well as discuss the broader significance of such data for structural biology applications moving forward.
Collapse
Affiliation(s)
| | - Shuai Niu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph Eschweiler
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Kondrat FDL, Struwe WB, Benesch JLP. Native mass spectrometry: towards high-throughput structural proteomics. Methods Mol Biol 2015; 1261:349-371. [PMID: 25502208 DOI: 10.1007/978-1-4939-2230-7_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Native mass spectrometry (MS) has become a sensitive method for structural proteomics, allowing practitioners to gain insight into protein self-assembly, including stoichiometry and three-dimensional architecture, as well as complementary thermodynamic and kinetic aspects. Although MS is typically performed in vacuum, a body of literature has described how native solution-state structure is largely retained on the timescale of the experiment. Native MS offers the benefit that it requires substantially smaller quantities of a sample than traditional structural techniques such as NMR and X-ray crystallography, and is therefore well suited to high-throughput studies. Here we first describe the native MS approach and outline the structural proteomic data that it can deliver. We then provide practical details of experiments to examine the structural and dynamic properties of protein assemblies, highlighting potential pitfalls as well as principles of best practice.
Collapse
Affiliation(s)
- Frances D L Kondrat
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | | | | |
Collapse
|
6
|
Maurer MM, Donohoe GC, Valentine SJ. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity. Analyst 2015; 140:6782-98. [PMID: 26114255 DOI: 10.1039/c5an00922g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enabling IM-MS instrumentation and techniques for characterizing sample structural heterogeneity have developed rapidly over the last five years.
Collapse
Affiliation(s)
- Megan M. Maurer
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Gregory C. Donohoe
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | | |
Collapse
|
7
|
Bornschein RE, Ruotolo BT. Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits. Analyst 2015; 140:7020-9. [DOI: 10.1039/c5an01242b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiprotein complexes have been shown to play critical roles across a wide range of cellular functions, but most probes of protein quaternary structure are limited in their ability to analyze complex mixtures and polydisperse structures using small amounts of total protein.
Collapse
|