1
|
Bhatt A, Jain S, Navani NK. Rapid, Sensitive, and Specific Microbial Whole-Cell Biosensor for the Detection of Histamine: A Potential Food Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27466-27478. [PMID: 39441673 DOI: 10.1021/acs.jafc.4c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Histamine is a biogenic amine; its level indicates food quality, as elevated levels cause food poisoning. Therefore, monitoring food at each step during processing until it reaches the consumer is crucial, but current techniques are complicated and time-consuming. Here, we designed a Pseudomonas putida whole-cell biosensor using a histamine-responsive genetic element expressing a fluorescent protein in the presence of the cognate target. We improved the performance of the proposed biosensor by optimizing the chassis, genetic regulatory element, and reporter gene. A sensitive and rapid biosensor variant was obtained with a limit of detection (LOD) of 0.39 ppm, manifesting a linear response (R2 = 0.98) from 0.28 to 18 ppm in 90 min. The biosensor showed minimal cross-reactivity with other biogenic amines and amino acids prevalent in food, making it highly specific. The biosensor effectively quantified histamine in spiked fish, prawn, and wine samples with a satisfactory recovery. Additionally, a colorimetric sensor variant PAlacZ was developed enabling histamine quantification in seafood via a smartphone application, with an LODgray of 0.23 ppm, exhibiting a linear response from 0 to 2.24 ppm. Overall, this study reports an efficient, specific, and highly sensitive biosensor with strong potential for the on-site detection of histamine, ensuring food safety.
Collapse
Affiliation(s)
- Ankita Bhatt
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shubham Jain
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Naveen K Navani
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
2
|
Han J, Lim HJ, Park J, Han DH, Kim DM, Park JK. On-chip microfluidic dual detection of amino acid metabolism disorders using cell-free protein synthesis. Biosens Bioelectron 2023; 222:114936. [PMID: 36455376 DOI: 10.1016/j.bios.2022.114936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Various metabolic diseases are associated with the accumulation of specific amino acids due to abnormal metabolic pathways, and thus can be diagnosed by measuring the level of amino acids in body fluids. However, present methods for amino acid analysis are not readily accessible because they require a complex experimental setup, expensive equipment, and a long processing time. Here, we present a dual sensing microfluidic device that enables fast, portable, and quantitative analysis of target amino acids, harnessing the biological mechanism of protein synthesis. In this device, the working principle of a finger-actuated pumping unit is applied, and the microchannels are designed to perform cell-free synthesis of a reporter protein in response to the target amino acids in the assay samples. Multiple steps required for the translational assay are controlled by the simple operation of two pushbuttons on the device. It is demonstrated that the developed microfluidic device provides precise quantification of two amino acids (methionine and phenylalanine) within 30 min at room temperature. We expect that the application of the presented device can be readily extended to the point-of-care testing of other metabolic compounds.
Collapse
Affiliation(s)
- Jieun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Hyun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Xiang J, Zhang J, Li S, Yuan R, Xiang Y. Aptamer-based and sensitive label-free colorimetric sensing of phenylalanine via cascaded signal amplifications. Anal Chim Acta 2022; 1230:340393. [DOI: 10.1016/j.aca.2022.340393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
|
4
|
Dhyani R, Jain S, Bhatt A, Kumar P, Navani NK. Genetic regulatory element based whole-cell biosensors for the detection of metabolic disorders. Biosens Bioelectron 2021; 199:113869. [PMID: 34915213 DOI: 10.1016/j.bios.2021.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022]
Abstract
Clinicians require simple, and cost-effective diagnostic tools for the quantitative determination of amino acids in physiological fluids for the detection of metabolic disorder diseases. Besides, amino acids also act as biological markers for different types of cancers and cardiovascular diseases. Herein, we applied an in-silico based approach to identify potential amino acid-responsive genetic regulatory elements for the detection of metabolic disorders in humans. Identified sequences were further transcriptionally fused with GFP, thus generating an optical readout in response to their cognate targets. Screening of genetic regulatory elements led us to discover two promoter elements (pmetE::GFP and ptrpL::GFP) that showed a significant change in the fluorescence response to homocysteine and tryptophan, respectively. The developed biosensors respond specifically and sensitively with a limit of detection of 3.8 μM and 3 μM for homocysteine and tryptophan, respectively. Furthermore, the clinical utility of this assay was demonstrated by employing it to identify homocystinuria and tryptophanuria diseases through the quantification of homocysteine and tryptophan in plasma and urine samples within 5 h. The precision and accuracy of the biosensors for disease diagnosis were well within an acceptable range. The general strategy used in this system can be expanded to screen different genetic regulatory elements present in other gram-negative and gram-positive bacteria for the detection of metabolic disorders.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Shubham Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Ankita Bhatt
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Dhyani R, Srivastava SK, Shankar K, Ghosh T, Beniwal A, Navani NK. A chemical genetic approach using genetically encoded reporters to detect and assess the toxicity of plant secondary metabolites against bacterial pathogens. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126399. [PMID: 34329040 DOI: 10.1016/j.jhazmat.2021.126399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Plant secondary metabolites are emerging as attractive alternatives in the development of therapeutics against infectious and chronic diseases. Due to the present pandemic, therapeutics showing toxicity against bacterial pathogens and viruses are gaining interest. Plant metabolites of terpenoid and phenylpropanoid categories have known antibacterial and antiviral properties. These metabolites have also been associated with toxicity to eukaryotic cells in terms of carcinogenicity, hepatotoxicity, and neurotoxicity. Sensing methods that can report the exact antibacterial dosage, formation, and accumulation of these antibacterial compounds are needed. The whole-cell reporters for such antibacterial metabolites are cost-effective and easy to maintain. In the present study, battery of toxicity sensors containing fluorescent transcriptional bioreporters was constructed, followed by fine-tuning the response using gene-debilitated E. coli mutants. This study shows that by combining regulatory switches with chemical genetics strategy, it may be possible to detect and elucidate the mode of action of effective antibacterial plant secondary metabolites - thymol, cinnamaldehyde, eugenol, and carvacrol in both pure and complex formats. Apart from the detection of adulteration of pure compounds present in complex mixture of essential oils, this approach will be useful to detect authenticity of essential oils and thus reduce unintended harmful effects on human and animal health.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | | | - Krishna Shankar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Arun Beniwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Ahn HT, Jang IS, Dang TV, Kim YH, Lee DH, Choi HS, Yu BJ, Kim MI. Effective Cryopreservation of a Bioluminescent Auxotrophic Escherichia coli-Based Amino Acid Array to Enable Long-Term Ready-to-Use Applications. BIOSENSORS-BASEL 2021; 11:bios11080252. [PMID: 34436054 PMCID: PMC8393857 DOI: 10.3390/bios11080252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
Amino acid arrays comprising bioluminescent amino acid auxotrophic Escherichia coli are effective systems to quantitatively determine multiple amino acids. However, there is a need to develop a method for convenient long-term preservation of the array to enable its practical applications. Here, we reported a potential strategy to efficiently maintain cell viability within the portable array. The method involves immobilization of cells within agarose gel supplemented with an appropriate cryoprotectant in individual wells of a 96-well plate, followed by storage under freezing conditions. Six cryoprotectants, namely dimethyl sulfoxide, glycerol, ethylene glycol, polyethylene glycol, sucrose, and trehalose, were tested in the methionine (Met) auxotroph-based array. Carbohydrate-type cryoprotectants (glycerol, sucrose, and trehalose) efficiently preserved the linearity of determination of Met concentration. In particular, the array with 5% trehalose exhibited the best performance. The Met array with 5% trehalose could determine Met concentration with high linearity (R2 value = approximately 0.99) even after storage at −20 °C for up to 3 months. The clinical utilities of the Met and Leu array, preserved at −20 °C for 3 months, were also verified by successfully quantifying Met and Leu in spiked blood serum samples for the diagnosis of the corresponding metabolic diseases. This long-term preservation protocol enables the development of a ready-to-use bioluminescent E. coli-based amino acid array to quantify multiple amino acids and can replace the currently used laborious analytical methods.
Collapse
Affiliation(s)
- Hee Tae Ahn
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - In Seung Jang
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - Yi Hyang Kim
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Dong Hoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
| | - Hyeun Seok Choi
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
| | - Byung Jo Yu
- Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea; (I.S.J.); (Y.H.K.); (H.S.C.)
- Correspondence: (B.J.Y.); (M.I.K.); Tel.: +82-41-589-8456 (B.J.Y.); +82-31-750-8563 (M.I.K.)
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea; (H.T.A.); (T.V.D.); (D.H.L.)
- Correspondence: (B.J.Y.); (M.I.K.); Tel.: +82-41-589-8456 (B.J.Y.); +82-31-750-8563 (M.I.K.)
| |
Collapse
|
7
|
Dhyani R, Shankar K, Bhatt A, Jain S, Hussain A, Navani NK. Homogentisic Acid-Based Whole-Cell Biosensor for Detection of Alkaptonuria Disease. Anal Chem 2021; 93:4521-4527. [PMID: 33655752 DOI: 10.1021/acs.analchem.0c04914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinicians require simple quantitative tools for the detection of homogentisic acid in alkaptonuria patients, a rare inherited disorder of amino acid metabolism. In this study, we report a whole-cell biosensor for homogentisic acid to detect alkaptonuria disease through the expression of green fluorescence protein. The assay system utilizes a promoter sequence (hmgA) isolated from the Pseudomonas aeruginosa genome. To increase the sensitivity, the sensor module harboring phmgA::GFP was further transformed into various transposon mutants debilitated in steps involved in the metabolism of phenylalanine and tyrosine via homogentisic acid as a central intermediate. The proposed biosensor was further checked for analytical features such as sensitivity, selectivity, linearity, and precision for the quantification of homogentisic acid in spiked urine samples. The limit of detection for the developed biosensor was calculated to be 3.9 μM, which is comparable to that of the various analytical techniques currently in use. The sensor construct showed no interference from all of the amino acids and its homolog molecules. The accuracy and precision of the proposed biosensor were validated using high-performance liquid chromatography (HPLC) with satisfactory results.
Collapse
Affiliation(s)
- Rajat Dhyani
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Shankar
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ankita Bhatt
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Jain
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ajmal Hussain
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Naveen Kumar Navani
- Chemical Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
8
|
Saleski TE, Kerner AR, Chung MT, Jackman CM, Khasbaatar A, Kurabayashi K, Lin XN. Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metab Eng 2019; 54:232-243. [PMID: 31034921 DOI: 10.1016/j.ymben.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Microbes can be engineered to synthesize a wide array of bioproducts, yet production phenotype evaluation remains a frequent bottleneck in the design-build-test cycle where strain development requires iterative rounds of library construction and testing. Here, we present Syntrophic Co-culture Amplification of Production phenotype (SnoCAP). Through a metabolic cross-feeding circuit, the production level of a target molecule is translated into highly distinguishable co-culture growth characteristics, which amplifies differences in production into highly distinguishable growth phenotypes. We demonstrate SnoCAP with the screening of Escherichia coli strains for production of two target molecules: 2-ketoisovalerate, a precursor of the drop-in biofuel isobutanol, and L-tryptophan. The dynamic range of the screening can be tuned by employing an inhibitory analog of the target molecule. Screening based on this framework requires compartmentalization of individual producers with the sensor strain. We explore three formats of implementation with increasing throughput capability: confinement in microtiter plates (102-104 assays/experiment), spatial separation on agar plates (104-105 assays/experiment), and encapsulation in microdroplets (105-107 assays/experiment). Using SnoCAP, we identified an efficient isobutanol production strain from a random mutagenesis library, reaching a final titer that is 5-fold higher than that of the parent strain. The framework can also be extended to screening for secondary metabolite production using a push-pull strategy. We expect that SnoCAP can be readily adapted to the screening of various microbial species, to improve production of a wide range of target molecules.
Collapse
Affiliation(s)
- Tatyana E Saleski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alissa R Kerner
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Corine M Jackman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Azzaya Khasbaatar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Lin C, Jair YC, Chou YC, Chen PS, Yeh YC. Transcription factor-based biosensor for detection of phenylalanine and tyrosine in urine for diagnosis of phenylketonuria. Anal Chim Acta 2018; 1041:108-113. [DOI: 10.1016/j.aca.2018.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/01/2022]
|
10
|
Jang YJ, Lee KH, Yoo TH, Kim DM. Complementary Cell-Free Translational Assay for Quantification of Amino Acids. Anal Chem 2017; 89:9638-9642. [PMID: 28776976 DOI: 10.1021/acs.analchem.7b01956] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we present a simple and economical method that enables rapid quantification of amino acids based on their polymerization into a signal-generating protein. This method harnesses amino acid-deficient cell-free protein synthesis systems that generate fluorescence signals in response to exogenous amino acids. When premixed with assay samples containing the amino acids in question, incubation of the cell-free synthesis reaction mixture rapidly resulted in the production of sfGFP, the fluorescence intensity of which was linearly proportional to the concentration of the amino acids. The assay method achieved a limit of detection as low as ∼100 nM and was successfully applied to the quantification of disease-related amino acids in biological samples. Compared with standard methods in current use that require chemical derivatization of amino acids and chromatographic equipment, the complementation assay method developed in this work enables the direct translation of amino acid titer into measurable biofluorescence intensity in a much shorter period, providing a more affordable and flexible option for the quantification of amino acids.
Collapse
Affiliation(s)
- Yeon-Jae Jang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University , 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
11
|
Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays. BIOMED RESEARCH INTERNATIONAL 2015; 2015:182107. [PMID: 26436087 PMCID: PMC4576000 DOI: 10.1155/2015/182107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes.
Collapse
|