1
|
Drachman N, Vietorisz J, Winchester AJ, Vest R, Cooksey GA, Pookpanratana S, Stein D. Photolysis of the peptide bond at 193 and 222 nm. J Chem Phys 2025; 162:165104. [PMID: 40277086 PMCID: PMC12033046 DOI: 10.1063/5.0257551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Ultraviolet (UV) light is a well-established tool for fragmenting peptides in vacuum. This study investigates the fragmentation of peptides using 193 and 222 nm light in aqueous solution. Changes in the absorption spectra of solutions of the model dipeptide glycylglycine are monitored using a combination of real-time in situ transmission measurements and UV-Vis spectroscopy to report peptide bond scission following UV irradiation. Irradiation by a broadband ultraviolet light source flattens the absorbance peak centered near 193 nm, indicating cleavage of peptide bonds. Irradiation with low-intensity, monochromatic 193 and 222 nm light enabled measurements of the single-photon quantum yield of peptide bond scission, found to be (1.50 ± 0.12)% at 193 nm and (0.16 ± 0.03)% at 222 nm. These findings indicate that peptides may be fragmented in solution prior to emission into a mass spectrometer for new types of single-molecule analyses. The susceptibility of peptide bonds to ultraviolet radiation also suggests limited lifetimes for peptides on the early Earth's surface, which are relevant to theories of the origins-of-life, and suggests a role for protein damage in explanations of the germicidal effect of 222 nm light exposure.
Collapse
Affiliation(s)
| | - Jacob Vietorisz
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Andrew J. Winchester
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Robert Vest
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gregory A. Cooksey
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sujitra Pookpanratana
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Derek Stein
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
2
|
Silzel J, Chen C, Sanchez-Marsetti C, Farias P, Carta V, Harman WH, Julian RR. Chromophore Optimization in Organometallic Au(III) Cys Arylation of Peptides and Proteins for 266 nm Photoactivation. Anal Chem 2024; 96:14581-14589. [PMID: 39196765 PMCID: PMC11391407 DOI: 10.1021/acs.analchem.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Cysteine is the most reactive naturally occurring amino acid due to the presence of a free thiol, presenting a tantalizing handle for covalent modification of peptides/proteins. Although many mass spectrometry experiments could benefit from site-specific modification of Cys, the utility of direct arylation has not been thoroughly explored. Recently, Spokoyny and co-workers reported a Au(III) organometallic reagent that robustly arylates Cys and tolerates a wide variety of solvents and conditions. Given the chromophoric nature of aryl groups and the known susceptibility of carbon-sulfur bonds to photodissociation, we set out to identify an aryl group that could efficiently cleave Cys carbon-sulfur bonds at 266 nm. A streamlined workflow was developed to facilitate rapid examination of a large number of aryls with minimal sample using a simple test peptide, RAAACGVLK. We were able to identify several aryl groups that yield abundant homolytic photodissociation of the adjacent Cys carbon-sulfur bonds with short activation times (<10 ms). In addition, we characterized the radical products created by photodissociation by subjecting the product ions to further collisional activation. Finally, we tested Cys arylation with human hemoglobin, identified reaction conditions that facilitate efficient modification of intact proteins, and evaluated the photochemistry and activation of these large radical ions.
Collapse
Affiliation(s)
- Jacob
W. Silzel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chengwei Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | | | - Phillip Farias
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - W. Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Yates NDJ, Hatton NE, Fascione MA, Parkin A. Site-Selective Aryl Diazonium Installation onto Protein Surfaces at Neutral pH using a Maleimide-Functionalized Triazabutadiene. Chembiochem 2023; 24:e202300313. [PMID: 37311168 DOI: 10.1002/cbic.202300313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Aryl diazonium cations are versatile bioconjugation reagents due to their reactivity towards electron-rich aryl residues and secondary amines, but historically their usage has been hampered by both their short lifespan in aqueous solution and the harsh conditions required to generate them in situ. Triazabutadienes address many of these issues as they are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV-exposure rapidly release aryl diazonium cations under biologically-relevant conditions. This paper describes the synthesis of a novel maleimide-functionalized triazabutadiene suitable for site-selectively installing aryl diazonium cations into proteins at neutral pH; we show reaction with this molecule and a surface-cysteine of a thiol disulfide oxidoreductase. Through photoactivation of the site-selectively installed triazabutadiene motifs, we generate aryl diazonium functionality, which we further derivatize via azo-bond formation to electron-rich aryl species, showcasing the potential utility of this strategy for the generation of photoswitches or protein-drug conjugates.
Collapse
Affiliation(s)
- Nicholas D J Yates
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Alison Parkin
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
4
|
He L, Jiang C, Chen Z, Ma D, Yi L, Xi Z. A triple-diazonium reagent for virus crosslinking and the synthesis of an azo-linked molecular cage. Org Biomol Chem 2022; 20:7577-7581. [PMID: 36131636 DOI: 10.1039/d2ob01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first bench-stable triple-diazonium reagent (TDA-1) was rationally designed and synthesized for coupling and crosslinking. The three reactive sites of TDA-1 can react with phenol-containing molecules as well as plant viruses in aqueous buffers efficiently. In addition, a new-type azo-linked cage was constructed by the direct reaction of TDA-1 with a triple-phenol molecule and was characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Lijun He
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhuoyue Chen
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides. ANALYTICA 2021. [DOI: 10.3390/analytica2040014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics.
Collapse
|
6
|
Alvarez Dorta D, Deniaud D, Mével M, Gouin SG. Tyrosine Conjugation Methods for Protein Labelling. Chemistry 2020; 26:14257-14269. [DOI: 10.1002/chem.202001992] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
| | - David Deniaud
- CNRS, CEISAM UMR, 6230 Université de Nantes 44000 Nantes France
| | - Mathieu Mével
- CHU de Nantes, INSERM UMR 1089 Université de Nantes 44200 Nantes France
| | | |
Collapse
|
7
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Girod M. Increasing specificity of tandem mass spectrometry by laser-induced dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:64-71. [PMID: 29689642 DOI: 10.1002/rcm.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Mass spectrometry offers an arsenal of tools for diverse proteomic investigations. This perspective article reviews some of the recent developments in the field of coupling laser-induced dissociation with mass spectrometry (LID-MS). Strategies involving labelling with a chromophore to induce specific photo-absorption properties are considered, with a focus on specific amino acid derivatization. Some of the opportunities and challenges of LID-MS after targeted labelling for increasing specificity in complex sample analysis are discussed.
Collapse
Affiliation(s)
- Marion Girod
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| |
Collapse
|
9
|
Pereverzev AY, Kopysov VN, Boyarkin OV. Peptide Bond Ultraviolet Absorption Enables Vibrational Cold-Ion Spectroscopy of Nonaromatic Peptides. J Phys Chem Lett 2018; 9:5262-5266. [PMID: 30157636 DOI: 10.1021/acs.jpclett.8b02148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peptide-bond VUV absorption is inherent to all proteins and peptides. Although widely exploited in top-down proteomics for photodissociation, this absorption has never been spectroscopically characterized in the gas phase. We have measured VUV/UV photofragmentation spectrum of a single peptide bond in a cryogenically cold protonated dipeptide. Although the spectrum appears to be very broadband and structureless, vibrational pre-excitation of this and even larger cold peptides significantly increases the UV dissociation yield for some of their photofragments. We use this effect to extend the technique of IR-UV photofragmentation vibrational spectroscopy, developed for aromatic peptides, to nonaromatic ones and demonstrate measurements of conformation-specific and nonspecific IR spectra for di- to hexa-peptides.
Collapse
Affiliation(s)
- Aleksandr Y Pereverzev
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , Station-6 , 1015 Lausanne , Switzerland
| | - Vladimir N Kopysov
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , Station-6 , 1015 Lausanne , Switzerland
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , Station-6 , 1015 Lausanne , Switzerland
| |
Collapse
|
10
|
Garcia L, Girod M, Rompais M, Dugourd P, Carapito C, Lemoine J. Data-Independent Acquisition Coupled to Visible Laser-Induced Dissociation at 473 nm (DIA-LID) for Peptide-Centric Specific Analysis of Cysteine-Containing Peptide Subset. Anal Chem 2018; 90:3928-3935. [PMID: 29465226 DOI: 10.1021/acs.analchem.7b04821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thanks to comprehensive and unbiased sampling of all precursor ions, the interest to move toward bottom-up proteomic with data-independent acquisition (DIA) is continuously growing. DIA offers precision and reproducibility performances comparable to true targeted methods but has the advantage of enabling retrospective data testing with the hypothetical presence of new proteins of interest. Nonetheless, the chimeric nature of DIA MS/MS spectra inherent to concomitant transmission of a multiplicity of precursor ions makes the confident identification of peptides often challenging, even with spectral library-based extraction strategy. The introduction of specificity at the fragmentation step upon ultraviolet or visible laser-induced dissociation (LID) range targeting only the subset of cysteine-containing peptides (Cys-peptide) has been proposed as an option to streamline and reduce the search space. Here, we describe the first coupling between DIA and visible LID at 473 nm to test for the presence of Cys-peptides with a peptide-centric approach. As a test run, a spectral library was built for a pool of Cys-synthetic peptides used as surrogates of human kinases (1 peptide per protein). By extracting ion chromatograms of query standard and kinase peptides spiked at different concentration levels in an Escherichia coli proteome lysate, DIA-LID demonstrates a dynamic range of detection of at least 3 decades and coefficients of precision better than 20%. Finally, the spectral library was used to search for endogenous kinases in human cellular extract.
Collapse
Affiliation(s)
- Lény Garcia
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua , F-69100 Villeurbanne , France
| | - Marion Girod
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua , F-69100 Villeurbanne , France
| | - Magali Rompais
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC , Université de Strasbourg, CNRS , UMR 7178, 25 rue Becquerel , 67087 Strasbourg , France
| | - Philippe Dugourd
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC , Université de Strasbourg, CNRS , UMR 7178, 25 rue Becquerel , 67087 Strasbourg , France
| | - Jérôme Lemoine
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua , F-69100 Villeurbanne , France
| |
Collapse
|
11
|
Garcia L, Lemoine J, Dugourd P, Girod M. Fragmentation patterns of chromophore-tagged peptides in visible laser induced dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1985-1992. [PMID: 28884878 DOI: 10.1002/rcm.7984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Tandem mass spectrometry (MS/MS) is the pivotal tool for protein structural characterization and quantification. Identification relies on the fragmentation step of tryptic peptides in bottom-up strategy. Specificity of fragmentation can be obtained using laser-induced dissociation (LID) in the visible range, after tagging of the targeted peptides with an adequate chromophore. Backbone fragmentation is required to obtain specific fragments and confident identification. We present herein a study of fragmentation patterns of chromophore-tagged peptides in LID, showing the potential of LID methodology to provide the maximum number of fragments for further identification and quantification. METHODS A total of 401 cysteine-containing tryptic peptides originating from the human proteome were derivatizated on the thiol group of cysteine with a Dabcyl maleimide chromophore, which has a high photo-absorption cross section at 473 nm. The derivatized peptides were then analyzed by LID at 473 nm on a Q Exactive instrument. RESULTS LID spectra present a characteristic fragment at m/z 252.112 for all precursors. This product ion arises from the internal dissociation of the Dabcyl chromophore. Several peptide-backbone fragment ions are also detected. Results show the quasi absence of fragmentation at the cysteine site. This indicates that part of the energy must be redistributed across the entire system despite excitation initially localized at the chromophore. Indeed, the fragmentation mainly occurs at 3 to 5 amino acids from the derivatized cysteine residue. CONCLUSIONS LID of derivatized cysteine-containing peptides displays the initial fragmentation of the chromophore. As energy is redistributed all along the peptide sequence, fragmentation of the peptide backbone is also observed. Thus, LID of chromophore-tagged peptides produces adequate fragment ions, allowing both good sequence coverage for a greater confidence of identification, and a large choice of transitions for specific quantification.
Collapse
Affiliation(s)
- Lény Garcia
- Univ de Lyon, CNRS, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Jérôme Lemoine
- Univ de Lyon, CNRS, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Philippe Dugourd
- Univ de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France
| | - Marion Girod
- Univ de Lyon, CNRS, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| |
Collapse
|
12
|
Quick MM, Mehaffey MR, Johns RW, Parker WR, Brodbelt JS. SITS Derivatization of Peptides to Enhance 266 nm Ultraviolet Photodissociation (UVPD). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1462-1472. [PMID: 28315237 DOI: 10.1007/s13361-017-1650-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
N-terminal derivatization of peptides with the chromogenic reagent 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) is demonstrated to enhance the efficiency of 266 nm ultraviolet photodissociation (UVPD). Attachment of the chromophore results in a mass shift of 454 Da and provides significant gains in the number and abundances of diagnostic fragment ions upon UVPD. Activation of SITS-tagged peptides with 266 nm UVPD leads to many fragment ions akin to the a/b/y ions commonly produced by CID, along with other sequence ions (c, x, and z) typically accessed through higher energy pathways. Extreme bias towards C-terminal fragment ions is observed upon activation of SITS-tagged peptides using multiple 266 nm laser pulses. Due to the high reaction efficiency of the isothiocyanate coupling to the N-terminus of peptides, we demonstrate the ability to adapt this strategy to a high-throughput LC-MS/MS workflow with 266 nm UVPD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- M Montana Quick
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Robert W Johns
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA
| | - W Ryan Parker
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
13
|
Parker WR, Holden DD, Cotham VC, Xu H, Brodbelt JS. Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S-Se Bond Cleavage with 266 nm Ultraviolet Photodissociation. Anal Chem 2016; 88:7222-9. [PMID: 27320857 DOI: 10.1021/acs.analchem.6b01465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S-Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S-Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A "prescreening" event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity.
Collapse
Affiliation(s)
- W Ryan Parker
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Dustin D Holden
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Victoria C Cotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Hua Xu
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
14
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
15
|
Robotham SA, Brodbelt JS. Comparison of Ultraviolet Photodissociation and Collision Induced Dissociation of Adrenocorticotropic Hormone Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1570-9. [PMID: 26122515 DOI: 10.1007/s13361-015-1186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/19/2015] [Accepted: 05/10/2015] [Indexed: 05/16/2023]
Abstract
In an effort to better characterize the fragmentation pathways promoted by ultraviolet photoexcitation in comparison to collision induced dissociation (CID), six adrenocorticotropic hormone (ACTH) peptides in a range of charge states were subjected to 266 nm ultraviolet photodissociation (UVPD), 193 nm UVPD, and CID. Similar fragment ions and distributions were observed for 266 nm UVPD and 193 nm UVPD for all peptides investigated. While both UVPD and CID led to preferential cleavage of the Y-S bond for all ACTH peptides [except ACTH (1-39)], UVPD was far less dependent on charge state and location of basic sites for the production of C-terminal and N-terminal ions. For ACTH (1-16), ACTH (1-17), ACTH (1-24), and ACTH (1-39), changes in the distributions of fragment ion types (a, b, c, x, y, z, and collectively N-terminal ions versus C-terminal ions) showed only minor changes upon UVPD for all charge states. In contrast, CID displayed significant changes in the fragment ion type distributions as a function of charge state, an outcome consistent with the dependence on the number and location of mobile protons that is not prominent for UVPD. Sequence coverages obtained by UVPD showed less dependence on charge state than those determined by CID, with the latter showing a consistent decrease in coverage as charge state increased.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
16
|
Girod M, Biarc J, Enjalbert Q, Salvador A, Antoine R, Dugourd P, Lemoine J. Implementing visible 473 nm photodissociation in a Q-Exactive mass spectrometer: towards specific detection of cysteine-containing peptides. Analyst 2015; 139:5523-30. [PMID: 25197743 DOI: 10.1039/c4an00956h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improvement of the fragmentation specificity may streamline data processing of bottom-up proteomic experiments by drastically reducing either the amount of MS/MS data to process in the discovery phase or the detection of interfering signals in targeted quantification. Photodissociation at appropriate wavelengths is a promising alternative technique to the non-discriminating conventional activation mode by collision. Here, we describe the implementation of visible LID at 473 nm in a Q-Exactive-Orbitrap mass spectrometer for the specific detection of cysteine-containing peptides tagged with a Dabcyl group. HCD cell DC offset and irradiation time were optimized to obtain high fragmentation yield and spectra free of contaminating CID product ions, while keeping the irradiation time scale compatible with chromatographic separation. With this optimized experimental set-up, the selective detection of cysteine-containing peptides in a whole tryptic hydrolysate of three combined proteins is demonstrated by comparing all ion fragmentation (AIF) spectra recorded online with and without laser irradiation.
Collapse
|