1
|
Topographic cues reveal filopodia-mediated cell locomotion in 3D microenvironment. Biointerphases 2020; 15:031001. [PMID: 32366106 DOI: 10.1116/1.5141051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In cell-material interactions, the formation and functioning of filopodia have been demonstrated to be very sensitive to topographic cues. However, substrate-exploring functions of filopodia in a 3D microenvironment remain elusive. In this study, the silk fibroin film with a micropillar structure was prepared to reveal a filopodial-mediated cell response to 3D topographic cues. The micropillars provided a confined space for cell spreading by a simplified 3D structure, allowing initial cells to settle on the bottom of substrates rather than on the top of micropillars. Shortly after cell adhesion, the authors describe how cells transform from a filopodia-rich spherical cell state to a lamellipodia-dominated state that enables cell to climb along micropillars and spread on the top of the micropillars. The authors found that filopodia not only served as sensors for pathfinding but also provided nucleation scaffolds for the formation and orientation of minilamellipodia on the micropillar substrate. On the route of long filopodial extension following micropillars, all three functional filopodial adhesions have the ability to form veil-like minilamellipodium, simply by tethering the filopodium to the micropillars. Stable filopodia contacts consistently stimulated the local protrusion of a lamellipodium, which ultimately steered cell migration. Their results suggest the filopodia-mediated cell locomotion in the 3D microenvironment using a filopodia-to-minilamellipodium transformation mechanism.
Collapse
|
2
|
Lim JT, Yoon YS, Lee WY, Jeong JT, Kim GS, Kim TG, Lee SK. Microfluidic channel-coupled 3D quartz nanohole arrays for high capture and release efficiency of BT20 cancer cells. NANOSCALE 2017; 9:17224-17232. [PMID: 29068023 DOI: 10.1039/c7nr04961g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanostructured materials, such as silicon nanowires, quartz nanostructures, and polymer-modified nanostructures, are a promising new class of materials for the capture and enumeration of very rare tumor cells, including circulating tumor cells (CTCs), to examine their biological characteristics in whole blood of cancer patients. These cells can then be used for transplantation, anti-tumor cell therapy, and cell-secreted protein studies. It is believed that 3-dimensional (3D) nanostructured substrates efficiently enhance cell capture yields due to the increased local contacts between the 3D nanostructures and extracellular extensions of the tumor cells. Recent studies have been performed with enhanced cell capture yields thanks to various nanostructured platforms; however, there remains an urgent need both to capture and release viable rare tumor cells for further molecular (i.e., protein) analysis and to develop patient-specific drugs. Here, we first demonstrate that our 3D quartz nanohole array (QNHA) tumor cell capture and release system allows us not only to selectively capture rare tumor cells, but also to release the cells with high capture and release rates. This system was developed using streptavidin (STR)-functionalized QNHA (STR-QNHA) with a microfluidic channel. Our system has ideal cell-separation yields of as high as 85-91% and high release rates of >90% for the BT20 cell line. We suggest that the use of a microfluidic channel technique coupled with a STR-QNHA cell capture and release chip (STR-QNHA cell chip) would be a powerful and simple process to evaluate the capture, enumeration, and release of CTCs from patient whole blood for studying further cell therapy and tumor-cell-secreted molecules.
Collapse
Affiliation(s)
- Jung-Taek Lim
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
3
|
Functionalized vertical GaN micro pillar arrays with high signal-to-background ratio for detection and analysis of proteins secreted from breast tumor cells. Sci Rep 2017; 7:14917. [PMID: 29097674 PMCID: PMC5668294 DOI: 10.1038/s41598-017-14884-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/19/2017] [Indexed: 01/21/2023] Open
Abstract
The detection of cancer biomarkers has recently attracted significant attention as a means of determining the correct course of treatment with targeted therapeutics. However, because the concentration of these biomarkers in blood is usually relatively low, highly sensitive biosensors for fluorescence imaging and precise detection are needed. In this study, we have successfully developed vertical GaN micropillar (MP) based biosensors for fluorescence sensing and quantitative measurement of CA15-3 antigens. The highly ordered vertical GaN MP arrays result in the successful immobilization of CA15-3 antigens on each feature of the arrays, thereby allowing the detection of an individual fluorescence signal from the top surface of the arrays owing to the high regularity of fluorophore-tagged MP spots and relatively low background signal. Therefore, our fluorescence-labeled and CA15-3 functionalized vertical GaN-MP-based biosensor is suitable for the selective quantitative analysis of secreted CA15-3 antigens from MCF-7 cell lines, and helps in the early diagnosis and prognosis of serious diseases as well as the monitoring of the therapeutic response of breast cancer patients.
Collapse
|
4
|
Buch-Månson N, Kang DH, Kim D, Lee KE, Yoon MH, Martinez KL. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. NANOSCALE 2017; 9:5517-5527. [PMID: 28401963 DOI: 10.1039/c6nr09700f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the past decade, vertical nanostructures have provided novel approaches for biomedical applications such as intracellular delivery/detection, specific cell capture, membrane potential measurement, and cellular activity regulation. Although the feasibility of the vertical nanostructures as a new biological tool has been thoroughly demonstrated, a better understanding of cell behavior on vertical nanostructures, in particular the effects of geometry, is essential for advanced applications. To investigate the cell behavior according to the variation of the spacing between vertical nanostructures, we have interfaced fibroblasts (NIH3T3) with density-controlled vertical silicon nanocolumn arrays (vSNAs). Over a wide range of vSNA densities, we observe three distinct cell settling regimes and investigate both overall cell behavior (adhesions, morphology, and mobility) and detailed biomacromolecule variance (F-actin and focal adhesion) across these regimes. We expect that these systematic observations could serve as a guide for improved nanostructure array design for the desired cell manipulation.
Collapse
Affiliation(s)
- Nina Buch-Månson
- Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
5
|
Jeong JT, Choi MK, Sim Y, Lim JT, Kim GS, Seong MJ, Hyung JH, Kim KS, Umar A, Lee SK. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate. Sci Rep 2016; 6:33835. [PMID: 27652886 PMCID: PMC5031981 DOI: 10.1038/srep33835] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/05/2016] [Indexed: 01/06/2023] Open
Abstract
Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.
Collapse
Affiliation(s)
- Jin-Tak Jeong
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Mun-Ki Choi
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Yumin Sim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jung-Taek Lim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Gil-Sung Kim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jung-Hwan Hyung
- Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Keun Soo Kim
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, South Korea
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran-11001, Kingdom of Saudi Arabia.,Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Sang-Kwon Lee
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
6
|
Kwak M, Han L, Chen JJ, Fan R. Interfacing Inorganic Nanowire Arrays and Living Cells for Cellular Function Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5600-10. [PMID: 26349637 PMCID: PMC4676807 DOI: 10.1002/smll.201501236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/26/2015] [Indexed: 04/14/2023]
Abstract
Inorganic nanowires are among the most attractive functional materials, which have emerged in the past two decades. They have demonstrated applications in information technology and energy conversion, but their utility in biological or biomedical research remains relatively under-explored. Although nanowire-based sensors have been frequently reported for biomolecular detection, interfacing nanowire arrays and living mammalian cells for the direct analysis of cellular functions is a very recent endeavor. Cell-penetrating nanowires enabled effective delivery of biomolecules, electrical and optical stimulation and recording of intracellular signals over a long period of time. Non-penetrating, high-density nanowire arrays display rich interactions between the nanostructured substrate and the micro/nanoscale features of cell surfaces. Such interactions enable efficient capture of rare cells including circulating tumor cells and trafficking leukocytes from complex biospecimens. It also serves as a platform for probing cell traction force and neuronal guidance. The most recent advances in the field that exploits nanowire arrays (both penetrating and non-penetrating) to perform rapid analysis of cellular functions potentially for disease diagnosis and monitoring are reviewed.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Lin Han
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jonathan J. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. Yale Cancer Center, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Huda S, Pilans D, Makurath M, Hermans T, Kandere-Grzybowska K, Grzybowski BA. Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells. ADVANCED MATERIALS INTERFACES 2014; 1:1400158. [PMID: 26900544 PMCID: PMC4757490 DOI: 10.1002/admi.201400158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell motions are driven by coordinated actions of the intracellular cytoskeleton - actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this review, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting of FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cells types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.
Collapse
Affiliation(s)
- Sabil Huda
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Monika Makurath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Thomas Hermans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Bartosz A Grzybowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| |
Collapse
|