1
|
Feoli A, Sarno G, Castellano S, Sbardella G. DMSO-Related Effects on Ligand-Binding Properties of Lysine Methyltransferases G9a and SETD8. Chembiochem 2024; 25:e202300809. [PMID: 38205880 DOI: 10.1002/cbic.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.
Collapse
Affiliation(s)
- Alessandra Feoli
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giuliana Sarno
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Sabrina Castellano
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
2
|
Du Y, Zhao F, Xing J, Liu Z, Cui M. Stabilization of Labile Lysozyme-Ligand Interactions in Native Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:366-373. [PMID: 36735536 DOI: 10.1021/jasms.2c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids are polyphenolic secondary metabolites with extensive biological activities and pharmacological effects. Exploring the interactions of flavonoids with proteins may be helpful for understanding their biological processes. Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to characterize the noncovalent protein-ligand (PL) complexes. However, some protein-flavonoid complexes are labile during electrospray ionization. Here, the labile lysozyme-flavonoid (rutin, icariin, and naringin) complexes were determined by direct ESI-MS without derivation. It has been found that low amounts of N-methylpyrrolidinone and dimethylformamide can protect labile lysozyme-flavonoid complexes away from dissociation during electrospray ionization process. The intact lysozyme-flavonoid complexes were specifically observed in mass spectra, and the measured binding affinities by ESI-MS were matched with the fluorescence data. The effects of additives on the analysis of lysozyme-flavonoid complexes were investigated by ESI-MS, combined with the molecular docking and fluorescence. This strategy was helpful to investigate the labile PL interactions by direct ESI-MS.
Collapse
Affiliation(s)
- Yang Du
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, China
- University of Science and Technology of China, Hefei, Anhui230029, China
| | - Fengjiao Zhao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, China
- University of Science and Technology of China, Hefei, Anhui230029, China
| | - Junpeng Xing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, China
| | - Zhiqiang Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, China
| | - Meng Cui
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, China
- University of Science and Technology of China, Hefei, Anhui230029, China
| |
Collapse
|
3
|
Kaeslin J, Brunner C, Ghiasikhou S, Schneider G, Zenobi R. Bioaffinity Screening with a Rapid and Sample-Efficient Autosampler for Native Electrospray Ionization Mass Spectrometry. Anal Chem 2021; 93:13342-13350. [PMID: 34546705 DOI: 10.1021/acs.analchem.1c03130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast and efficient handling of ligands and biological targets are required in bioaffinity screening based on native electrospray ionization mass spectrometry (ESI-MS). We use a prototype microfluidic autosampler, called the "gap sampler", to sequentially mix and electrospray individual small molecule ligands together with a target protein and compare the screening results with data from thermal shift assay and surface plasmon resonance. In a first round, all three techniques were used for a screening of 110 ligands against bovine carbonic anhydrase II, which resulted in five mutual hits and some false positives with ESI-MS presumably due to the high ligand concentration or interferences from dimethyl sulfoxide. In a second round, 33 compounds were screened in lower concentrations and in a less complex matrix, resulting in only true positives with ESI-MS. Within a cycle time of 30 s, dissociation constants were determined within an order of magnitude accuracy consuming only 5 pmol of ligand and less than 15 pmol of protein per screened compound. In a third round, dissociation constants of five compounds were accurately determined in a titration experiment. Thus, the gap sampler can rapidly and efficiently be used for high-throughput screening.
Collapse
Affiliation(s)
- Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Sahar Ghiasikhou
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Collier MP, Moreira KB, Li KH, Chen YC, Itzhak D, Samant R, Leitner A, Burlingame A, Frydman J. Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Sci Rep 2021; 11:13084. [PMID: 34158536 PMCID: PMC8219831 DOI: 10.1038/s41598-021-91086-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.
Collapse
Affiliation(s)
| | | | - Kathy H Li
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Chan Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Rahul Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Alma Burlingame
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Heterogeneous Off-Target Effects of Ultra-Low Dose Dimethyl Sulfoxide (DMSO) on Targetable Signaling Events in Lung Cancer In Vitro Models. Int J Mol Sci 2021; 22:ijms22062819. [PMID: 33802212 PMCID: PMC8001778 DOI: 10.3390/ijms22062819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Targetable alterations in cancer offer novel opportunities to the drug discovery process. However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expression and activation levels of 187 proteins, of which 137 were kinases and downstream substrates, were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins measured, all were statistically different in at least one comparison at the highest DMSO concentration, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to be statistically different in more than 5 cell lines, indicating heterogeneous response across models. These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target effects need to be carefully evaluated in pre-clinical drug screening and testing.
Collapse
|
6
|
Zhao B, Zhuang X, Bian X, Pi Z, Liu S, Liu Z, Song F. Effects of aprotic solvents on the stability of metal-free superoxide dismutase probed by native electrospray ionization-ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:351-358. [PMID: 30734979 DOI: 10.1002/jms.4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Considering that aprotic solvents are often used as cosolvents in investigating the interactions between small molecules and proteins, we assessed the effects of five aprotic solvents represented by dimethylformamide (DMF) on the structure stabilities of metal-free SOD1 (apo-SOD1) by native electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS). These aprotic solvents include DMF, 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), acetonitrile (ACN), and tetrahydrofuran (THF). Results indicated that DMI, DMSO, and DMF at low percentage concentration could reduce the average charge and the dimer dissociation of apo-SOD1. By contrast, ACN and THF at low concentration have no similar effect. DMF was selected as a representative solvent to further investigate the detailed effects on the structure stability of apo-SOD1 by using collision-induced dissociation and unfolding. The results reveal that the addition of minimal DMF to an aqueous protein solution can protect against the unfolding and dissociation of dimer, even under destabilizing conditions (such as low pH or high cone voltage). When the different percentage concentrations of DMF were added, the average collision cross section of apo-SOD1 showed that apo-SOD1 became compacted when the DMF concentration increased from 0% to 1% and eventually started extending when increased from 1% to 20%. The results indicated that DMF has similar effects to DMSO in native mass spectrometry (MS) and it can also be used as a cosolvent besides DMSO in investigating the stabilities of proteins and the interactions between small molecules and proteins.
Collapse
Affiliation(s)
- Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhuang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyu Bian
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Nshanian M, Lakshmanan R, Chen H, Ogorzalek Loo RR, Loo JA. Enhancing Sensitivity of Liquid Chromatography-Mass Spectrometry of Peptides and Proteins Using Supercharging Agents. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:157-164. [PMID: 29750076 PMCID: PMC5937529 DOI: 10.1016/j.ijms.2017.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
8
|
Chan DSH, Kavanagh ME, McLean KJ, Munro AW, Matak-Vinković D, Coyne AG, Abell C. Effect of DMSO on Protein Structure and Interactions Assessed by Collision-Induced Dissociation and Unfolding. Anal Chem 2017; 89:9976-9983. [DOI: 10.1021/acs.analchem.7b02329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel S.-H. Chan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Madeline E. Kavanagh
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kirsty J. McLean
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew. W. Munro
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Dijana Matak-Vinković
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anthony G. Coyne
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chris Abell
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Landreh M, Costeira-Paulo J, Gault J, Marklund EG, Robinson CV. Effects of Detergent Micelles on Lipid Binding to Proteins in Electrospray Ionization Mass Spectrometry. Anal Chem 2017. [PMID: 28627869 PMCID: PMC5559180 DOI: 10.1021/acs.analchem.7b00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
A wide
variety of biological processes rely upon interactions between
proteins and lipids, ranging from molecular transport to the organization
of the cell membrane. It was recently established that electrospray
ionization mass spectrometry (ESI-MS) is capable of capturing transient
interactions between membrane proteins and their lipid environment,
and a detailed understanding of the underlying processes is therefore
of high importance. Here, we apply ESI-MS to investigate the factors
that govern complex formation in solution and gas phases by comparing
nonselective lipid binding with soluble and membrane proteins. We
find that exogenously added lipids did not bind to soluble proteins,
suggesting that lipids have a low propensity to form electrospray
ionization adducts. The presence of detergents at increasing micelle
concentrations, on the other hand, resulted in moderate lipid binding
to soluble proteins. A direct ESI-MS comparison of lipid binding to
the soluble protein serum albumin and to the integral membrane protein
NapA shows that soluble proteins acquire fewer lipid adducts. Our
results suggest that protein–lipid complexes form via contacts
between proteins and mixed lipid/detergent micelles. For soluble proteins,
these complexes arise from nonspecific contacts between the protein
and detergent/lipid micelles in the electrospray droplet. For membrane
proteins, lipids are incorporated into the surrounding micelle in
solution, and complex formation occurs independently of the ESI process.
We conclude that the lipids in the resulting complexes interact predominantly
with sites located in the transmembrane segments, resulting in nativelike
complexes that can be interrogated by MS.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, Oxfordshire OX1 3QZ, United Kingdom
| | - Joana Costeira-Paulo
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Joseph Gault
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, Oxfordshire OX1 3QZ, United Kingdom
| | - Erik G Marklund
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Carol V Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, Oxfordshire OX1 3QZ, United Kingdom
| |
Collapse
|
10
|
Chan DSH, Matak-Vinković D, Coyne AG, Abell C. Insight into Protein Conformation and Subcharging by DMSO from Native Ion Mobility Mass Spectrometry. ChemistrySelect 2016. [DOI: 10.1002/slct.201601402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Shiu-Hin Chan
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Dijana Matak-Vinković
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Anthony G. Coyne
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Chris Abell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| |
Collapse
|
11
|
Bartman CE, Metwally H, Konermann L. Effects of Multidentate Metal Interactions on the Structure of Collisionally Activated Proteins: Insights from Ion Mobility Spectrometry and Molecular Dynamics Simulations. Anal Chem 2016; 88:6905-13. [DOI: 10.1021/acs.analchem.6b01627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Claire E. Bartman
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
12
|
Landreh M, Robinson CV. A new window into the molecular physiology of membrane proteins. J Physiol 2014; 593:355-62. [PMID: 25630257 PMCID: PMC4303381 DOI: 10.1113/jphysiol.2014.283150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
Integral membrane proteins comprise ∼25% of the human proteome. Yet, our understanding of their molecular physiology is still in its infancy. This can be attributed to two factors: the experimental challenges that arise from the difficult chemical nature of membrane proteins, and the unclear relationship between their activity and their native environment. New approaches are therefore required to address these challenges. Recent developments in mass spectrometry have shown that it is possible to study membrane proteins in a solvent-free environment and provide detailed insights into complex interactions, ligand binding and folding processes. Interestingly, not only detergent micelles but also lipid bilayer nanodiscs or bicelles can serve as a means for the gentle desolvation of membrane proteins in the gas phase. In this manner, as well as by direct addition of lipids, it is possible to study the effects of different membrane components on the structure and function of the protein components allowing us to add functional data to the least accessible part of the proteome.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | | |
Collapse
|
13
|
Ogorzalek Loo RR, Lakshmanan R, Loo JA. What protein charging (and supercharging) reveal about the mechanism of electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1675-93. [PMID: 25135609 PMCID: PMC4163133 DOI: 10.1007/s13361-014-0965-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 05/11/2023]
Abstract
Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).
Collapse
Affiliation(s)
- Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|