1
|
Ferhan AR, Jackman JA, Malekian B, Xiong K, Emilsson G, Park S, Dahlin AB, Cho NJ. Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions. Anal Chem 2018; 90:7458-7466. [DOI: 10.1021/acs.analchem.8b00974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Joshua A. Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Bita Malekian
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Soohyun Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Andreas B. Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
2
|
Yang S, Meng Z, Kang Z, Sun C, Wang T, Feng S, Meng Q, Liu K. The structure and configuration changes of multifunctional peptide vectors enhance gene delivery efficiency. RSC Adv 2018; 8:28356-28366. [PMID: 35542475 PMCID: PMC9084241 DOI: 10.1039/c8ra04101f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022] Open
Abstract
We designed a series of peptide vectors that contain functional fragments with the goal of enhancing cellular internalization and gene transfection efficiency. The functional fragments included a cell-penetrating peptide (R9), a cationic amphiphilic α-helical peptide [(LLKK)3-H6 or (LLHH)3], a stearyl moiety, and cysteine residues. Vectors were also synthesized with D-type amino acids to improve their proteolytic stability. The conformations, particle sizes, and zeta potentials for complexes of these peptides with pGL3 plasmid DNA were characterized by circular dichroism and dynamic light scattering. In addition, cellular uptake of the peptide/DNA complexes and gene transfection efficiency were investigated with fluorescence-activated cell sorting and confocal laser-scanning microscopy. Greater transfection efficiency was achieved with the vectors containing the R9 segment, and the efficiency was greater than Lipo2000. In addition, the D-type C18-c(llkk)3ch6-r9 had about 7 times and 5.5 times the transfection efficiency of Lipo2000 in 293T cells and NIH-3T3 cells at the N/P ratio of 6, respectively. Overall, the multifunctional peptide gene vectors containing the R9 segment exhibited enhanced cellular internalization, a high gene transfection efficiency, and low cytotoxicity. The R9 containing peptide vectors can improve the gene transfection efficiency.![]()
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Chao Sun
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
3
|
Meng Z, Luan L, Kang Z, Feng S, Meng Q, Liu K. Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery. J Mater Chem B 2016; 5:74-84. [PMID: 32263436 DOI: 10.1039/c6tb02862d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide vectors offer a promising gene delivery approach because of their biocompatibility and ease of functionalization. This article describes the design and evaluation of a series of multifunctional peptides and their gene delivery abilities. The peptides were composed of a cell-penetrating segment, stearyl moiety, cationic amphiphilic α-helical segment, and cysteine and histidine residues. The proton sponge effect of histidine residues at low pH and the α-helical conformation should improve endosomal escape. Inclusion of d-type amino acids should improve proteolytic stability. The conformation, particle size and zeta potential of peptide/DNA complexes were characterized by circular dichroism and dynamic light scattering. Gene transfection efficiency was investigated by fluorescence-activated cell sorting and confocal microscopy. Transfection efficiencies of the designed peptide vectors were better than those of C18-C(LLKK)3C-TAT and Lipo2000. d-Type peptide C18-c(llhh)3c-tat showed three times higher transfection efficiency at N/P ratios of 6 and 8 than Lipo2000 in NIH-3T3 and 293T cells. All peptides showed lower cytotoxicity than Lipo2000 in NIH-3T3 and 293T cells. In the presence of trypsin or serum in vitro, d-type peptides showed better stability than l-type peptides. Overall, the designed histidine-enriched multifunctional peptide gene vectors promoted cellular uptake, endosomal escape and gene transfection.
Collapse
Affiliation(s)
- Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China.
| | | | | | | | | | | |
Collapse
|
4
|
Jackman JA, Linardy E, Yoo D, Seo J, Ng WB, Klemme DJ, Wittenberg NJ, Oh SH, Cho NJ. Plasmonic Nanohole Sensor for Capturing Single Virus-Like Particles toward Virucidal Drug Evaluation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1159-66. [PMID: 26450658 DOI: 10.1002/smll.201501914] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Indexed: 05/18/2023]
Abstract
A plasmonic nanohole sensor for virus-like particle capture and virucidal drug evaluation is reported. Using a materials-selective surface functionalization scheme, passive immobilization of virus-like particles only within the nanoholes is achieved. The findings demonstrate that a low surface coverage of particles only inside the functionalized nanoholes significantly improves nanoplasmonic sensing performance over conventional nanohole arrays.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
| | - Eric Linardy
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
| | - Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN, 55455, USA
| | - Jeongeun Seo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
| | - Wei Beng Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
| | - Daniel J Klemme
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN, 55455, USA
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN, 55455, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN, 55455, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
5
|
Jackman JA, Goh HZ, Zhdanov VP, Knoll W, Cho NJ. Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles. J Am Chem Soc 2016; 138:1406-13. [PMID: 26751083 DOI: 10.1021/jacs.5b12491] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore formation by membrane-active antimicrobial peptides is a classic strategy of pathogen inactivation through disruption of membrane biochemical gradients. It remains unknown why some membrane-active peptides also inhibit enveloped viruses, which do not depend on biochemical gradients. Here, we employ a label-free biosensing approach based on simultaneous quartz crystal microbalance-dissipation and ellipsometry measurements in order to investigate how a pore-forming, virucidal peptide destabilizes lipid vesicles in a surface-based experimental configuration. A key advantage of the approach is that it enables direct kinetic measurement of the surface-bound peptide-to-lipid (P:L) ratio. Comprehensive experiments involving different bulk peptide concentrations and biologically relevant membrane compositions support a unified model that membrane lysis occurs at or above a critical P:L ratio, which is at least several-fold greater than the value corresponding to the onset of pore formation. That is consistent with peptide-induced pores causing additional membrane strain that leads to lysis of highly curved membranes. Collectively, the work presents a new model that describes how peptide-induced pores may destabilize lipid membranes through a membrane strain-related lytic process, and this knowledge has important implications for the design and application of membrane-active peptides.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Haw Zan Goh
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Vladimir P Zhdanov
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Wolfgang Knoll
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore.,Austrian Institute of Technology (AIT) , Donau-City-Strasse 1, 1220 Vienna, Austria
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
6
|
Kim MC, Gunnarsson A, Tabaei SR, Höök F, Cho NJ. Supported lipid bilayer repair mediated by AH peptide. Phys Chem Chem Phys 2016; 18:3040-7. [DOI: 10.1039/c5cp06472d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High quality and complete supported lipid bilayers are formed on silicon oxide by employing an AH peptide mediated repair step.
Collapse
Affiliation(s)
- Min Chul Kim
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Anders Gunnarsson
- Department of Applied Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Seyed R. Tabaei
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Fredrik Höök
- Department of Applied Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|