1
|
Zhang B, Hua L, Fan Z, Wen Y, Zhang L, Xie Y, Gao Y, Jiang J, Li H. A new photoionization-induced substitution reaction chemical ionization time-of-flight mass spectrometry for highly sensitive detection of trace exhaled ethylene. Anal Chim Acta 2024; 1317:342910. [PMID: 39030010 DOI: 10.1016/j.aca.2024.342910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
Highly sensitive and rapid detection of ethylene, the smallest alkene of great significance in human physiological metabolism remains a great challenge. In this study, we developed a new photoionization-induced substitution reaction chemical ionization time-of-flight mass spectrometry (PSCI-TOFMS) for trace exhaled ethylene detection. An intriguing ionization phenomenon involving a substitution reaction between the CH2Br2+ reactant ion and ethylene molecule was discovered and studied for the first time. The formation of readily identifiable [CH2Br·C2H4]+ product ion greatly enhanced the ionization efficiency of ethylene, which led to approximately 800-fold improvement of signal intensity over that in single photon ionization mode. The CH2Br2+ reactant ion intensity and ion-molecule reaction time were optimized, and a Nafion tube was employed to eliminate the influence of humidity on the ionization of ethylene. Consequently, a limit of detection (LOD) as low as 0.1 ppbv for ethylene was attained within 30 s at 100 % relative humidity. The application of PSCI-TOFMS on the rapid detection of trace amounts of exhaled ethylene from healthy smoker and non-smoker volunteers demonstrated the satisfactory performance and potential of this system for trace ethylene measurement in clinical diagnosis, atmospheric measurement, and process monitoring.
Collapse
Affiliation(s)
- Baimao Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Zhigang Fan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lichuan Zhang
- Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Road, Dalian, 116001, People's Republic of China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yunnan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
2
|
Qiu C, Li X, Li Z, Yang L, Wang W, Xu F, Ding CF. Simulation study of three new quadrupole ion funnels to improve low-mass ion transmission. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9648. [PMID: 37953544 DOI: 10.1002/rcm.9648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023]
Abstract
RATIONALE By applying radio frequency (RF) and direct current (DC) voltages to corresponding ring electrodes, ion funnel (IF) can efficiently focus and transmit ions. However, IF has an inherent mass discrimination problem that will greatly limit low mass-to-charge (m/z) ion focusing and transmission. To improve the transmission efficiency (TE) of the IF, this paper explores three new profile quadrupole ion funnels (QIF). METHODS Computer simulations of the potential field distributions of QIFs and conventional IFs were performed to assess their focusing characteristics. To compare the TE, ion optics simulation programs SIMION and AXSIM were used to perform a series of simulations. Three QIF types (toroidal, cylindrical, and hyperbolic configurations) were used to improve ion TE, and their transmission and focus performance were also compared with conventional IF. RESULTS By simulating the trajectories of ions in the IF, the optimum electrical parameters for three new QIFs were obtained and compared with conventional IFs, with TE improvements recorded for m/z < 100 of 16%, 20%, and 13%. CONCLUSIONS The results indicate that studying these three new IF configurations has great research significance for improving sensitivity to low m/z ions in mass spectrometer instruments.
Collapse
Affiliation(s)
- Chaohui Qiu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Xiaolong Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Zhe Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Liu Yang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Weimin Wang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Fuxing Xu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Chuan-Fan Ding
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Dang M, Liu R, Dong F, Liu B, Hou K. Vacuum ultraviolet photoionization on-line mass spectrometry: instrumentation developments and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
5
|
Wan N, Jiang J, Hu F, Chen P, Zhu K, Deng D, Xie Y, Wu C, Hua L, Li H. Nonuniform Electric Field-Enhanced In-Source Declustering in High-Pressure Photoionization/Photoionization-Induced Chemical Ionization Mass Spectrometry for Operando Catalytic Reaction Monitoring. Anal Chem 2021; 93:2207-2214. [PMID: 33410328 DOI: 10.1021/acs.analchem.0c04081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoionization mass spectrometry (PI-MS) is a powerful and highly sensitive analytical technique for online monitoring of volatile organic compounds (VOCs). However, due to the large difference of PI cross sections for different compounds and the limitation of photon energy, the ability of lamp-based PI-MS for detection of compounds with low PI cross sections and high ionization energies (IEs) is insufficient. Although the ion production rate can be improved by elevating the ion source pressure, the problem of generating plenty of cluster ions, such as [MH]+·(H2O)n (n = 1 and 2) and [M2]+, needs be solved. In this work, we developed a new nonuniform electric field high-pressure photoionization/photoionization-induced chemical ionization (NEF-HPPI/PICI) source with the abilities of both HPPI and PICI, which was accomplished through ion-molecule reactions with high-intensity H3O+ reactant ions generated by photoelectron ionization (PEI) of water molecules. By establishing a nonuniform electric field in a three-zone ionization region to enhance in-source declustering and using 99.999% helium as the carrier gas, not only the formation of cluster ions was significantly diminished, but the ion transmission efficiency was also improved. Consequently, the main characteristic ion for each analyte both in HPPI and PICI occupied more than 80%, especially [HCOOH·H]+ with a yield ratio of 99.2% for formic acid. The analytical capacity of this system was demonstrated by operando monitoring the hydrocarbons and oxygenated VOC products during the methanol-to-olefins and methane conversion catalytic reaction processes, exhibiting wide potential applications in process monitoring, reaction mechanism research, and online quality control.
Collapse
Affiliation(s)
- Ningbo Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Fan Hu
- Henan Medical Instruments Testing Institute, 79 Xiongerhe Road, Zhengzhou 450018, People's Republic of China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Kaixin Zhu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Chenxin Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
6
|
Chen X, Hua L, Jiang J, Hu F, Wan N, Li H. Multi-capillary column high-pressure photoionization time-of-flight mass spectrometry and its application for online rapid analysis of flavor compounds. Talanta 2019; 201:33-39. [PMID: 31122430 DOI: 10.1016/j.talanta.2019.03.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
Abstract
High-pressure photoionization time-of-flight mass spectrometry (HPPI-TOFMS) is a versatile and highly sensitive analytical technique for online and real-time analysis of trace volatile organic compounds in complex mixtures. However, discrimination of isomers is usually a great challenge for the soft ionization method, and matrix effect is also inevitable under high pressure in the HPPI source. In this work, we describe a first attempt to develop a two-dimensional (2D) hyphenated instrument by coupling of a multi-capillary column (MCC) with a HPPI-TOFMS to overcome these problems. The capability of the MCC-HPPI-TOFMS for discrimination of isomeric compounds and elimination of the matrix effect was demonstrated by analyzing flavor mixtures. With the merits of fast separation, soft ionization and high detection sensitivity, satisfactory effects in the 2D analysis were achieved, despite the relatively low chromatographic resolution of MCC. As a result, three isomers, eucalyptol, l-menthone and linalool, in a flavor mixture were successfully categorized within 90 s, and the matrix effect caused by solvent ethanol was significantly eliminated as well. The limits of detection (LODs) down to sub-ppbv level were achieved for the investigated five flavor compounds without any enrichment process, and an excellent repeatability was obtained with the relative standard deviations (RSDs) of signal intensities ≤5%. The MCC-HPPI-TOFMS system was preliminarily applied for rapid and online analysis of flavor compounds in the exhaled gas of a volunteer after mouth rinsing with a gargle product. The rapid changes of the three flavor compounds, as well as the steady endogenous metabolite acetone, in the exhaled gas were successfully determined with a time-resolution of only 1.5 min.
Collapse
Affiliation(s)
- Xuan Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Jichun Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Fan Hu
- Henan Province Medical Instrument Testing Institute, 79 Xiongerhe Road, Zhengzhou, 450018, People's Republic of China
| | - Ningbo Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| |
Collapse
|
7
|
Li Q, Hua L, Xie Y, Jiang J, Li H, Hou K, Tian D, Li H. Single photon ionization time-of-flight mass spectrometry with a windowless RF-discharge lamp for high temporal resolution monitoring of the initial stage of methanol-to-olefins reaction. Analyst 2019; 144:1104-1109. [PMID: 30480677 DOI: 10.1039/c8an01840e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methanol-to-olefins (MTO) is a very important industrial catalysis technique for the production of light olefins, which is of great economic value and strategic significance. However, it is a great challenge for the traditional analytical methods to obtain the real-time information of product variation during MTO reaction process, which is vital for the conversion process research and mechanism explanation. In this study, a single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) based on a windowless RF-discharge (WLRF) lamp was developed for real-time measurement of catalytic product during the initial stage of MTO reaction. The vacuum ultraviolet (VUV) photon energy was easily adjusted by changing the discharge gas. Argon (Ar) gas was eventually adopted as the discharge gas, since it produces photons with appropriate energy of 11.6 eV and 11.8 eV for ionization of light olefin molecules. The detection sensitivities of ethylene and propylene were largely improved to a substantially similar level with limits of detection (LODs) down to 16.98 and 9.64 ppbv, respectively. The initial stage of MTO reaction was real-time monitored with a high temporal resolution of 0.5 s, revealing that ethylene was the first olefin product followed by propylene. The successful application of WLRF-SPI-TOFMS in the monitoring of MTO catalytic process indicated broad application prospects of this instrument in the industrial reaction process monitoring.
Collapse
Affiliation(s)
- QingYun Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Parcher JF, Wang M, Chittiboyina AG, Khan IA. In‐source collision‐induced dissociation (IS‐CID): Applications, issues and structure elucidation with single‐stage mass analyzers. Drug Test Anal 2017; 10:28-36. [DOI: 10.1002/dta.2249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jon F. Parcher
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University Mississippi USA
| |
Collapse
|
9
|
Direct and comprehensive analysis of dyes based on integrated molecular and structural information via laser desorption laser postionization mass spectrometry. Talanta 2017; 176:116-123. [PMID: 28917730 DOI: 10.1016/j.talanta.2017.07.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 11/23/2022]
Abstract
Laser desorption laser postionization time-of-flight mass spectrometry (LDPI-TOFMS) was employed for direct analysis and determination of typical basic dyes. It was also used for the analysis and comprehensive understanding of complex materials such as blue ballpoint pen inks. Simultaneous emergences of fragmental and molecular information largely simplify and facilitate unambiguous identification of dyes via variable energy of 266nm postionization laser. More specifically, by optimizing postionization laser energy with the same energy of desorption laser, the structurally significant results show definite differences in the fragmentation patterns, which offer opportunities for discrimination of isomeric species with identical molecular weight. Moreover, relatively high spectra resolution can be acquired without the expense of sensitivity. In contrast to laser desorption/ionization mass spectrometry (LDI-MS), LDPI-MS simultaneously offers valuable molecular information about dyes in traces, solvents and additives about inks, thereby offering direct determination and comprehensive understanding of blue ballpoint inks and giving a high level of confidence to discriminate the complicated evidentiary samples. In addition, direct analysis of the inks not only allows the avoidance of the tedious sample preparation processes, significantly shortening the overall analysis time and improving throughput, but allows minimized sample consumption which is important for rare and precious samples.
Collapse
|
10
|
Luo Z. Deep Ultraviolet Single‐Photon Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017. [DOI: 10.5772/68072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Zhao W, Zhang Q, Lu B, Sun S, Zhang S, Zhang J. Rapid Determination of Six Low Molecular Carbonyl Compounds in Tobacco Smoke by the APCI-MS/MS Coupled to Data Mining. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:8260860. [PMID: 28512594 PMCID: PMC5415865 DOI: 10.1155/2017/8260860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/14/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) and data mining. The ionization was carried out in positive mode, and six low molecular carbonyl compounds of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde were analyzed by both full scan mode and daughter scan mode. To overcome the quantitative difficulties from isomer of acetone/propionaldehyde and butanone/butyraldehyde, the quantitation procedure was performed with the characteristic ion of [CH3O]+ under CID energy of 5 and 15 eV. Subsequently, the established method was successfully applied to analysis of six low molecular carbonyl compounds in tobacco smoke with analytical period less than four minutes. The contents of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde for a cigarette were about 63 ± 5.8, 325 ± 82, 55 ± 9.7, 11 ± 1.4, 67 ± 5.9, and 12 ± 1.8 μg/cig, respectively. The experimental results indicated that the established method had the potential application in rapid determination of low molecular carbonyl compounds.
Collapse
Affiliation(s)
- Wuduo Zhao
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| | - Binbin Lu
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianxun Zhang
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| |
Collapse
|
12
|
Spesyvyi A, Sovová K, Španěl P. In-tube collision-induced dissociation for selected ion flow-drift tube mass spectrometry, SIFDT-MS: a case study of NO(+) reactions with isomeric monoterpenes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2009-2016. [PMID: 27459885 DOI: 10.1002/rcm.7679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Soft chemical ionisation techniques including selected ion flow tube mass spectrometry, SIFT-MS, and proton transfer reaction mass spectrometry, PTR-MS, cannot currently quantify individual isomers present simultaneously in samples, a notable example being atmospheric monoterpenes. A possible solution lies in integrating in-tube collision-induced dissociation, CID, into a selected ion flow-drift tube mass spectrometry, SIFDT-MS, instrument. METHODS In-tube CID was implemented by applying electrostatic potential difference between the resistive glass flow-drift tube downstream end and the nose cone of a quadrupole mass spectrometer. The resulting inhomogeneous electric field accelerates the product ions along the last 1 mm before the nose cone and causes their dissociation in collisions with molecules of the buffer gas (4% air, 96% helium, 2 mbar). Mass spectra of the product ions of NO(+) reactions with 3-carene, β-pinene, (S)-limonene and their mixture were obtained for variable potential difference. RESULTS Potential difference up to 47.7 V resulted in dramatic changes in the mass spectra due to fragmentation of the monoterpene radical molecular cations. The main observed fragments correspond to logical losses from different isomeric structures. Fragmentation increases with the potential difference and can be interpreted as single collision dissociation on air molecules at centre-of-mass energies of several eV. Combination of fragmentation patterns at different CID enables distinction of isomers in the mixture on the basis of pseudoinversion. CONCLUSIONS In-tube CID represents a simple and low-cost extension to SIFDT-MS that allows real-time identification of isomeric products of ion-molecule reactions on the basis of their structural differences and corresponding changes in fragmentation patterns with CID energy without significantly changing the net reaction time important for absolute quantification. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223, Prague 8, Czech Republic
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Kristýna Sovová
- J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223, Prague 8, Czech Republic
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223, Prague 8, Czech Republic
| |
Collapse
|
13
|
Wang Y, Jiang J, Hua L, Hou K, Xie Y, Chen P, Liu W, Li Q, Wang S, Li H. High-Pressure Photon Ionization Source for TOFMS and Its Application for Online Breath Analysis. Anal Chem 2016; 88:9047-55. [DOI: 10.1021/acs.analchem.6b01707] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Jichun Jiang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Lei Hua
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Keyong Hou
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Yuanyuan Xie
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Ping Chen
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| | - Wei Liu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Qingyun Li
- Department
of Instrumentation and Electrical Engineering, Jilin University, Jilin, 130021, People’s Republic of China
| | - Shuang Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Haiyang Li
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, People’s Republic of China
| |
Collapse
|
14
|
Makola MM, Steenkamp PA, Dubery IA, Kabanda MM, Madala NE. Preferential alkali metal adduct formation by cis geometrical isomers of dicaffeoylquinic acids allows for efficient discrimination from their trans isomers during ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1011-8. [PMID: 27003038 DOI: 10.1002/rcm.7526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 05/15/2023]
Abstract
RATIONALE Caffeoylquinic acid (CQA) derivatives are a group of structurally diverse phytochemicals that have attracted attention due to their many health benefits. The structural diversity of these molecules is due in part to the presence of regio- and geometrical isomerism. This structural diversity hampers the accurate annotation of these molecules in plant extracts. Mass spectrometry (MS) is successfully used to differentiate between the different regioisomers of the CQA derivatives; however, the accurate discrimination of the geometrical isomers of these molecules has proven to be an elusive task. METHODS UV-irradiated methanolic solutions of diCQA were analyzed using an ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOFMS) method in negative ionisation mode. An in-source collision-induced dissociation (ISCID) method was optimized by varying both the capillary and cone voltages to achieve differential fragmentation patterns between UV-generated geometrical isomers of the diCQAs during MS analyses. RESULTS Changes in the capillary voltage did not cause a significant difference to the fragmentation patterns of the four geometrical isomers, while changes in the cone voltage resulted in significant differences in the fragmentation patterns. The results also show, for the first time, the preferential formation of alkali metal (Li(+), Na(+) and K(+)) adducts by the cis geometrical isomers of diCQAs, compared to their trans counterparts. CONCLUSIONS Optimized QTOFMS-based methods may be used to differentiate the geometrical isomers of diCQAs. Finally, additives such as metal salts to induce adduct formation can be applied as an alternative method to differentiate closely related isomers which could have been difficult to differentiate under normal MS settings.
Collapse
Affiliation(s)
- Mpho M Makola
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Paul A Steenkamp
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
- CSIR Biosciences, Natural Products and Agroprocessing Group, Pretoria, 0001, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Mwadham M Kabanda
- Department of Chemistry, North-West University (Mafikeng Campus), Private Bag x2046, Mmabatho, 2735, South Africa
| | - Ntakadzeni E Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| |
Collapse
|
15
|
Jiang J, Wang Y, Hou K, Hua L, Chen P, Liu W, Xie Y, Li H. Photoionization-Generated Dibromomethane Cation Chemical Ionization Source for Time-of-Flight Mass Spectrometry and Its Application on Sensitive Detection of Volatile Sulfur Compounds. Anal Chem 2016; 88:5028-32. [DOI: 10.1021/acs.analchem.6b00428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jichun Jiang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Yan Wang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Keyong Hou
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
| | - Lei Hua
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
| | - Ping Chen
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
| | - Wei Liu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, People’s Republic of China
| | - Yuanyuan Xie
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
| | - Haiyang Li
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, 116023, People’s Republic of China
| |
Collapse
|
16
|
Yuan C, Liu X, Zeng C, Zhang H, Jia M, Wu Y, Luo Z, Fu H, Yao J. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:024102. [PMID: 26931868 DOI: 10.1063/1.4941841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.
Collapse
Affiliation(s)
- Chengqian Yuan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianhu Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenghui Zeng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiye Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yishi Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
He S, Cui H, Lai Y, Sun C, Luo S, Li H, Seshan K. A temperature-programmed reaction/single-photon ionization time-of-flight mass spectrometry system for rapid investigation of gas–solid heterogeneous catalytic reactions under realistic reaction conditions. Catal Sci Technol 2015. [DOI: 10.1039/c5cy01550b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new TPRn/SPI-TOF-MS system for rapid investigation of realistic gas–solid heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Songbo He
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Huapeng Cui
- Laboratory for Rapid Separation and Detection
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Yulong Lai
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Chenglin Sun
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Sha Luo
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Haiyang Li
- Laboratory for Rapid Separation and Detection
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - K. Seshan
- Catalytic Processes and Materials
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|