1
|
Li P, Wu DR, Yip SH, Sun D, Pawluczyk J, Smith A, Kempson J, Mathur A. Large-scale purification of a deprotected macrocyclic peptide by supercritical fluid chromatography (SFC) integrated with liquid chromatography in discovery chemistry. J Chromatogr A 2024; 1730:465112. [PMID: 38972253 DOI: 10.1016/j.chroma.2024.465112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
A macrocyclic peptide A was successfully purified in large quantities (∼30 g) in >95 % purity by an integrated two-step orthogonal purification process combining supercritical fluid chromatography (SFC) with medium-pressure reverse-phase liquid chromatography (MP-RPLC). MP-RPLC was used to fractionate the crude peptide A, remove unwanted trifluoroacetic acid (TFA) originating from the peptide A cleavage off the resin, and convert the peptide A into ammonium acetate salt form, prior to the final purification by SFC. A co-solvent of methanol/acetonitrile containing ammonium acetate and water in CO2 was developed on a Waters BEH 2-Ethylpyridine column. The developed SFC method was readily scaled up onto a 5 cm diameter column to process multi-gram quantities of the MP-RPLC fraction to reach > 95 % purity with a throughput/productivity of 0.96 g/h. The incorporation of SFC with MP-RPLC has been demonstrated to have a broader application in other large-scale polypeptide purifications.
Collapse
Affiliation(s)
- Peng Li
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Shiuhang Henry Yip
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA.
| | - Dawn Sun
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Joseph Pawluczyk
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Aaron Smith
- Spectrix, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - James Kempson
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| | - Arvind Mathur
- Department of Discovery Synthesis, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Rd, Princeton, NJ 08543-4000, USA
| |
Collapse
|
2
|
Chen G, Lin Z, Peng H, Zhang S, Zhang Z, Zhang X, Nie Q, Luo W. The transmembrane protein TMEM182 promotes fat deposition and alters metabolomics and lipidomics. Int J Biol Macromol 2024; 259:129144. [PMID: 38181918 DOI: 10.1016/j.ijbiomac.2023.129144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
TMEM182, a transmembrane protein highly expressed in muscle and adipose tissues, plays a crucial role in muscle cell differentiation, metabolism, and signaling. However, its role in fat deposition and metabolism is still unknown. In this study, we used overexpression and knockout models to examine the impact of TMEM182 on fat synthesis and metabolism. Our results showed that TMEM182 overexpression increased the expression of fat synthesis-related genes and promoted the differentiation of preadipocytes into fat cells. In TMEM182 knockout mice, there was a significant decrease in abdominal fat deposition. RNA sequencing results showed that TMEM182 overexpression in preadipocytes enhanced the activity of pathways related to fat formation, ECM-receptor interaction, and cell adhesion. Furthermore, our analysis using UPLC-MS/MS showed that TMEM182 significantly altered the metabolite and lipid content and composition in chicken breast muscle. Specifically, TMEM182 increased the content of amino acids and their derivatives in chicken breast muscle, promoting amino acid metabolic pathways. Lipidomics also revealed a significant increase in the content of glycerophospholipids, sphingolipids, and phospholipids in the breast muscle after TMEM182 overexpression. These findings suggest that TMEM182 plays a crucial role in regulating fat deposition and metabolism, making it a potential target for treating obesity-related diseases and animal breeding.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zetong Lin
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haoqi Peng
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Hayashida M, Suzuki R, Horie S, Masuda J, Yamaguchi T, Obika S. Applicability of supercritical fluid chromatography for oligonucleotide analysis: A proof-of-concept study. J Chromatogr A 2023; 1708:464333. [PMID: 37660558 DOI: 10.1016/j.chroma.2023.464333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
We evaluated the suitability of supercritical fluid chromatography (SFC) for oligonucleotide analysis using 4-mer oligonucleotides with various phosphorothioate (PS) contents as model compounds. Column screening showed that the diol-modified column was able to separate sequences with different PS contents. Optimization of the column body and additives allowed us to analyze polar oligonucleotides using SFC. Various sequences were also analyzed using the optimized method. A good peak shape was obtained when the guanine plus cytosine content of the analyte was two or less in the 4-mer oligonucleotides. Furthermore, we found that the retention times of the selected sequences were positively correlated with polar surface areas, indicating that oligonucleotides interact with polar stationary phases. In contrast, more hydrophobic full PS sequences were retained more strongly in the diol column than the full phosphodiester (PO) sequences. This suggests that the diol column has unique selectivity for PO and PS linkages. These results indicate that SFC is potentially applicable to oligonucleotide analysis with a separation mechanism that is different from that of ion-pair reversed-phase liquid chromatography.
Collapse
Affiliation(s)
- Momoka Hayashida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Shimadzu Analytical Innovation Research Laboratories, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Risa Suzuki
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinnosuke Horie
- Shimadzu Analytical Innovation Research Laboratories, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan; Shimadzu Europa GmbH, Albert-Hahn-Strasse 6-10, Duisburg 47269, Federal Republic of Germany
| | - Junichi Masuda
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Neumann J, Schmidtsdorff S, Schmidt AH, Parr MK. Ternary eluent compositions in supercritical fluid chromatography improved fingerprinting of therapeutic peptides. J Sep Sci 2023; 46:e2201007. [PMID: 36601991 DOI: 10.1002/jssc.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Currently, little information has been published on the application of ternary eluent compositions in supercritical fluid chromatography for separating peptides. This work investigates the benefits of adding acetonitrile to methanol as the modifier. Three cyclic antibiotic peptides (bacitracin, colistin, and daptomycin) ranging between 1000 and 2000 Da were chosen as model substances. The ternary mixture of carbon dioxide, methanol, and acetonitrile is optimized to increase the resolution of the peptide's fingerprint. In addition, varying compositions of methanol and acetonitrile were found to change the elution order of the analytes, which is a valuable tool during method development. An individual gradient method using two Torus 2-PIC columns (each 100 × 3.0 mm, 1.7 μm), carbon dioxide, and a modifier consisting of acetonitrile/methanol/water/methanesulfonic acid (60:40:2:0.1, v:v:v:v) was optimized for each of the peptides. Subsequently, a generic method development protocol applicable to polypeptides is proposed.
Collapse
Affiliation(s)
- Jonas Neumann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Chromicent GmbH, Berlin, Germany
| | - Sebastian Schmidtsdorff
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Chromicent GmbH, Berlin, Germany
| | | | - Maria K Parr
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Neumann J, Schmidtsdorff S, Schmidt AH, Parr MK. Application of Sub‐/Supercritical fluid chromatography for the fingerprinting of a complex therapeutic peptide. J Sep Sci 2022; 45:3095-3104. [DOI: 10.1002/jssc.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jonas Neumann
- Chromicent GmbH Johann‐Hittorf‐Str. 8 12489 Berlin Germany
- Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
| | - Sebastian Schmidtsdorff
- Chromicent GmbH Johann‐Hittorf‐Str. 8 12489 Berlin Germany
- Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
| | | | - Maria K. Parr
- Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
| |
Collapse
|
6
|
Beres M. Expanding the boundaries of SFC: Analysis of biomolecules. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Luo W, Lin Z, Chen J, Chen G, Zhang S, Liu M, Li H, He D, Liang S, Luo Q, Zhang D, Nie Q, Zhang X. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration. J Cachexia Sarcopenia Muscle 2021; 12:1704-1723. [PMID: 34427057 PMCID: PMC8718073 DOI: 10.1002/jcsm.12767] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transmembrane proteins are vital for intercellular signalling and play important roles in the control of cell fate. However, their physiological functions and mechanisms of action in myogenesis and muscle disorders remain largely unexplored. It has been found that transmembrane protein 182 (TMEM182) is dramatically up-regulated during myogenesis, but its detailed functions remain unclear. This study aimed to analyse the function of TMEM182 during myogenesis and muscle regeneration. METHODS RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence approaches were used to analyse TMEM182 expression during myoblast differentiation. A dual-luciferase reporter assay was used to identify the promoter region of the TMEM182 gene, and a chromatin immunoprecipitation assay was used to investigate the regulation TMEM182 transcription by MyoD. We used chickens and TMEM182-knockout mice as in vivo models to examine the function of TMEM182 in muscle growth and muscle regeneration. Chickens and mouse primary myoblasts were used to extend the findings to in vitro effects on myoblast differentiation and fusion. Co-immunoprecipitation and mass spectrometry were used to identify the interaction between TMEM182 and integrin beta 1 (ITGB1). The molecular mechanism by which TMEM182 regulates myogenesis and muscle regeneration was examined by Transwell migration, cell wound healing, adhesion, glutathione-S-transferse pull down, protein purification, and RNA immunoprecipitation assays. RESULTS TMEM182 was specifically expressed in skeletal muscle and adipose tissue and was regulated at the transcriptional level by the myogenic regulatory factor MyoD1. Functionally, TMEM182 inhibited myoblast differentiation and fusion. The in vivo studies indicated that TMEM182 induced muscle fibre atrophy and delayed muscle regeneration. TMEM182 knockout in mice led to significant increases in body weight, muscle mass, muscle fibre number, and muscle fibre diameter. Skeletal muscle regeneration was accelerated in TMEM182-knockout mice. Furthermore, we revealed that the inhibitory roles of TMEM182 in skeletal muscle depend on ITGB1, an essential membrane receptor involved in cell adhesion and muscle formation. TMEM182 directly interacted with ITGB1, and this interaction required an extracellular hybrid domain of ITGB1 (aa 387-470) and a conserved region (aa 52-62) within the large extracellular loop of TMEM182. Mechanistically, TMEM182 modulated ITGB1 activation by coordinating the association between ITGB1 and laminin and regulating the intracellular signalling of ITGB1. Myogenic deletion of TMEM182 increased the binding activity of ITGB1 to laminin and induced the activation of the FAK-ERK and FAK-Akt signalling axes during myogenesis. CONCLUSIONS Our data reveal that TMEM182 is a novel negative regulator of myogenic differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Wen Luo
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China.,Department of Orthaepedics and Traumatology, The Chinese University of Hong Kong, Hongkong
| | - Zetong Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Manqing Liu
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Hongmei Li
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Danlin He
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Shaodong Liang
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Qingbin Luo
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Dexiang Zhang
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Gordillo R. Supercritical fluid chromatography hyphenated to mass spectrometry for metabolomics applications. J Sep Sci 2020; 44:448-463. [DOI: 10.1002/jssc.202000805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ruth Gordillo
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
9
|
Molineau J, Hideux M, West C. Chromatographic analysis of biomolecules with pressurized carbon dioxide mobile phases - A review. J Pharm Biomed Anal 2020; 193:113736. [PMID: 33176241 DOI: 10.1016/j.jpba.2020.113736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
Biomolecules like proteins, peptides and nucleic acids widely emerge in pharmaceutical applications, either as synthetic active pharmaceutical ingredients, or from natural products as in traditional Chinese medicine. Liquid-phase chromatographic methods (LC) are widely employed for the analysis and/or purification of such molecules. On another hand, to answer the ever-increasing requests from scientists involved in biomolecules projects, other chromatographic methods emerge as useful complements to LC. In particular, there is a growing interest for chromatography with a mobile phase comprising pressurized carbon dioxide, which can be named either (i) supercritical (or subcritical) fluid chromatography (SFC) when CO2 is the major constituent of the mobile phase, or (ii) enhanced fluidity liquid chromatography (EFLC) when hydro-organic or purely organic solvents are the major constituents of the mobile phase. Despite the low polarity of CO2, supposedly inadequate to solubilize such biomolecules, SFC and EFLC were both employed in many occasions for this purpose. This paper specifically reviews the literature related to the SFC/EFLC analysis of free amino acids, peptides, proteins, nucleobases, nucleosides and nucleotides. The analytical conditions employed for specific molecular families are presented, with a focus on the nature of the stationary phase and the mobile phase composition. We also discuss the potential benefits of combining SFC/EFLC to LC in a single gradient elution, a method sometimes designated as unified chromatography (UC). Finally, detection issues are presented, and more particularly hyphenation to mass spectrometry.
Collapse
Affiliation(s)
- Jérémy Molineau
- University of Orleans, ICOA, CNRS UMR 7311, rue de Chartres, BP 6759, 45067 Orléans, France
| | - Maria Hideux
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311, rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
10
|
Govender K, Naicker T, Baijnath S, Kruger HG, Govender T. The development of a sub/supercritical fluid chromatography based purification method for peptides. J Pharm Biomed Anal 2020; 190:113539. [DOI: 10.1016/j.jpba.2020.113539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
|
11
|
Applications of supercritical fluid chromatography technique in current bioanalysis and pharmaceutical analysis. Bioanalysis 2020; 12:1347-1351. [PMID: 32975435 DOI: 10.4155/bio-2020-0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
12
|
Zajickova Z, Nováková L, Svec F. Monolithic Poly(styrene-co-divinylbenzene) Columns for Supercritical Fluid Chromatography–Mass Spectrometry Analysis of Polypeptide. Anal Chem 2020; 92:11525-11529. [DOI: 10.1021/acs.analchem.0c02874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zuzana Zajickova
- Department of Physical Sciences, Barry University, Miami Shores, Florida 33161, United States
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic
| | - Frantisek Svec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Advantageous use of SFC for separation of crude therapeutic peptides and peptide libraries. J Pharm Biomed Anal 2020; 185:113227. [DOI: 10.1016/j.jpba.2020.113227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
14
|
Piri F, Mollahosseini A, Khadir A, Milani Hosseini M. Synthesis of a novel magnetic zeolite–hydroxyapatite adsorbent via microwave-assisted method for protein adsorption via magnetic solid-phase extraction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01883-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Huang Y, Tang G, Zhang T, Fillet M, Crommen J, Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal 2018; 147:65-80. [DOI: 10.1016/j.jpba.2017.08.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
|
16
|
Protein separations using enhanced-fluidity liquid chromatography. J Chromatogr A 2017; 1523:257-264. [DOI: 10.1016/j.chroma.2017.07.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/21/2022]
|
17
|
The many faces of packed column supercritical fluid chromatography – A critical review. J Chromatogr A 2015; 1382:2-46. [DOI: 10.1016/j.chroma.2014.12.083] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/15/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
|
18
|
Fairchild JN, Brousmiche DW, Hill JF, Morris MF, Boissel CA, Wyndham KD. Chromatographic Evidence of Silyl Ether Formation (SEF) in Supercritical Fluid Chromatography. Anal Chem 2015; 87:1735-42. [DOI: 10.1021/ac5035709] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Jason F. Hill
- Waters Corporation, Milford, Massachusetts 01757, United States
| | | | | | | |
Collapse
|
19
|
Chen CJ, Tseng MC, Lin HJ, Lin TW, Chen YR. Visual indicator for surfactant abundance in MS-based membrane and general proteomics applications. Anal Chem 2011; 82:8283-90. [PMID: 20828166 DOI: 10.1021/ac1017937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The existence of surfactants in proteomics samples can severely reduce enzymatic digestion efficiency, liquid chromatography (LC) separation efficiency, column lifetime, and mass spectrometry (MS) sensitivity. Although various techniques are able to remove surfactants, surfactants may occasionally be retained in samples due to variations in sample preparation method or personal skill. Evaluation of surfactant residue in a sample, however, usually requires an additional instrument and is time-consuming. In this study, a simple and rapid visual indicator for surfactant abundance (VISA) was developed. With the detection of a visible surfactant pellet in the solution, this assay was able to detect surfactant residue in aqueous solutions within 5 min. Without the need of additional equipment such as a mass spectrometer, every user can perform a quick test on their bench before sending the sample to the MS facility. The detection limit for the commonly used surfactants, Triton X-114 and SDS, was about 0.0005% and 0.0002%, respectively. The VISA was successfully applied to evaluate the efficiency of removal of surfactants in Triton X-114 extracted membrane proteins using tube-gel. With the combination of Triton X-114 extraction and tube-gel protocol, a study of spermatozoa membrane proteome identified about 252 proteins of which about 67.5% were classified as membrane proteins. The coexistence of protein and surfactant did not affect the VISA sensitivity, suggesting that this indicator is suitable for proteomics applications. The VISA also has potential for the detection of other surfactants and can be applied to other surfactant removing protocols.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Larry T. Taylor
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061-0212
| |
Collapse
|
21
|
Abstract
Background: Supercritical fluid chromatography (SFC) is continually gaining attention in the separation sciences as demand increases for higher throughput isolations and purifications. The higher flow rates associated with SFC provide a significant decrease in analysis time and increase in sample-throughput efficiency. Peptides are of particular interest for SFC due, in part, to the rather extensive analysis time required by HPLC. Results: This work explored a wide range of peptides not only for detection, but also for separation using SFC. A separation of five peptides ranging in molecular weights from 238.2 to 1046.2 was achieved by SFC in less than 12 min, compared with 50 min using HPLC. Conclusion: This research further illustrates the ever-expanding applicability of SFC to a wider variety of compound classes. The rapid analysis time associated with SFC, as seen in this work, provides a nearly fivefold decrease in analysis time when compared with HPLC.
Collapse
|
22
|
|
23
|
Quantitative analysis of highly homologous proteins: the challenge of assaying the “CYP-ome” by mass spectrometry. Anal Bioanal Chem 2008; 392:1123-34. [DOI: 10.1007/s00216-008-2407-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 08/18/2008] [Accepted: 09/11/2008] [Indexed: 11/25/2022]
|