1
|
Feng Y, Zhou Y, Yang X, Huang Z, Hu J, Lv Y. Time-Dependent Chemiluminescence Fingerprint for Ultrasensitive Trap State Identification in Zinc Gallates. Anal Chem 2025; 97:5324-5331. [PMID: 40000372 DOI: 10.1021/acs.analchem.5c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
With the growing demand for highly efficient sensors capable of rapid and reliable detection of trap states in semiconductors, developing novel chemical and physical phenomena induced by trap states at nanomaterial interfaces has thus emerged as a critical technological field. Herein, we developed an innovative time-dependent chemiluminescence (CL) method for evaluating trap states in semiconductor materials. By leveraging the unique trap states of Cr3+-activated zinc gallate (ZGOC) semiconductors and the hydroxyl radical (·OH)-rich EDTA-Fe2+-H2O2 system, we achived rational manipulation of ·OH-triggered time-dependent near-infrared (NIR) CL induction. To extract high-information-density outputs from the CL response, ZGOC nanocrystals associated with different Cr3+-related trap states were precisely identified by a distinct CL "fingerprint" pattern and robust statistical analysis. Remarkably, the generalizability of this method was validated using mixed models containing two typical samples and other adjustable ZGOC systems. The developed CL probe for Cr3+-related trap state evaluation provides advantages such as cost-effectiveness, operational simplicity, and rapid response, offering a promising and innovative alternative to conventional trap state assessment methods.
Collapse
Affiliation(s)
- Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yuxian Zhou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xinyi Yang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Zili Huang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiaxi Hu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Xie L, Wang L, Liu X, Chen J, Wen X, Zhao W, Liu S, Zhao Q. Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers. Nat Commun 2024; 15:5702. [PMID: 38977693 PMCID: PMC11231348 DOI: 10.1038/s41467-024-50117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm-2 over 1000 h with a negligible decay rate of 9.67 μV h-1.
Collapse
Affiliation(s)
- Lingbin Xie
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Xixing Wen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Weiwei Zhao
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Shujuan Liu
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Heo J, Seo S, Yun H, Ku KH. Stimuli-responsive nanoparticle self-assembly at complex fluid interfaces: a new insight into dynamic surface chemistry. NANOSCALE 2024; 16:3951-3968. [PMID: 38319675 DOI: 10.1039/d3nr05990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The self-assembly of core/shell nanoparticles (NPs) at fluid interfaces is a rapidly evolving area with tremendous potential in various fields, including biomedicine, display devices, catalysts, and sensors. This review provides an in-depth exploration of the current state-of-the-art in the programmed design of stimuli-responsive NP assemblies, with a specific focus on inorganic core/organic shell NPs below 100 nm for their responsive adsorption properties at fluid and polymer interfaces. The interface properties, such as ligands, charge, and surface chemistry, play a significant role in dictating the forces and energies governing both NP-NP and NP-hosting matrix interactions. We highlight the fundamental principles governing the reversible surface chemistry of NPs and present detailed experimental examples in the following three key aspects of stimuli-responsive NP assembly: (i) stimuli-driven assembly of NPs at the air/liquid interface, (ii) reversible NP assembly at the liquid/liquid interface, including films and Pickering emulsions, and (iii) hybrid NP assemblies at the polymer/polymer and polymer/water interfaces that exhibit stimuli-responsive behaviors. Finally, we address current challenges in existing approaches and offer a new perspective on the advances in this field.
Collapse
Affiliation(s)
- Jieun Heo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Seunghwan Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Wang F, Xie L, Sun N, Zhi T, Zhang M, Liu Y, Luo Z, Yi L, Zhao Q, Wang L. Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023; 16:32. [PMID: 37999792 PMCID: PMC10673806 DOI: 10.1007/s40820-023-01251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro-nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro-nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
Collapse
Affiliation(s)
- Fengshun Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Lingbin Xie
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ning Sun
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ting Zhi
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Yang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Cao Y, Wu N, Li HD, Xue JW, Wang R, Yang T, Wang JH. Efficient Pathogen Capture and Sensing Promoted by Dynamic Deformable Nanointerfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203962. [PMID: 36328708 DOI: 10.1002/smll.202203962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The M13 bacteriophage (M13 phage) has emerged as an attractive bionanomaterial due to its chemistry/gene modifiable feature and unique structures. Herein, a dynamic deformable nanointerface is fabricated taking advantage of the unique feature of the M13 phage for ultrasensitive detection of pathogens. PIII proteins at the tip of the M13 phage are genetically modified to display 6His peptide for site-specific anchoring onto Ni-NTA microbeads, whereas pVIII proteins along the side of the M13 phage are orderly arranged with thousands of aptamers and their complementary strands (c-apt). The flexible M13 nanofibers with rich recognition sites act as octopus tentacles, resulting in a 19-fold improvement in the capture affinity toward the target. The competitive binding of the target pathogen releases c-apts and initiates rolling circle amplification (RCA). The sway motion of M13 nanofibers accelerates the diffusion of c-apts, thus promoting RCA efficiency. Benefiting from the strengthened capture ability toward the target and the accelerated RCA process, three-orders of magnitude improvement in the sensitivity is achieved, with a detection limit of 8 cfu mL-1 for Staphylococcus aureus. The promoted capture ability and assay performance highlights the essential role of the deformable feature of the engineered interface. This may provide inspiration for the construction of more efficient reaction interfaces.
Collapse
Affiliation(s)
- Ying Cao
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Na Wu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Da Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jing-Wen Xue
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Rui Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
6
|
Li Y, Zhong H, Jin Y, Guan B, Yue J, Zhao R, Huang Y. Metal-Organic Framework Accelerated One-Step Capture and Reduction of Palladium to Catalytically Active Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40408-40417. [PMID: 36000946 DOI: 10.1021/acsami.2c10594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recovery of noble metals and in situ transforming to functional materials hold great promise in the sustainability of natural resources but remain as a challenge. Herein, the variable chemical microenvironments created by the inorganic-organic hybrid composition of metal-organic frameworks (MOFs) were exploited to tune the metal-support interactions, thus establishing an integrated strategy for recovering and reducing palladium (Pd). Assisted by sonic waves and alcoholic solvent, selective capture of Pd(II) from a complicated matrix to directly afford Pd nanoparticles (NPs) in MOFs can be achieved in one step within several minutes. Mechanism investigation reveals that the Pd binding site and the energy barriers between ionic and metallic status are sensitive to chemical environments in different frameworks. Thanks to the clean, dispersive, and uniform nature of Pd NPs, Pd@MOFs synthesized from a complicated environment exhibited high catalytic activity toward 4-nitrophenol reduction and Suzuki coupling reactions.
Collapse
Affiliation(s)
- Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiling Yue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Variable nanosheets for highly efficient oxygen evolution reaction. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|