1
|
Biswas N, Mondal R, Ansari KU, Yaseen R, Lord RL, Groysman S, Shimon D, Gelman D. High-Valent Nickel Complexes Supported by a Functionalized PC(sp 3)P Pincer Ligand: Properties and Catalysis. Chemistry 2025; 31:e202500618. [PMID: 40195909 DOI: 10.1002/chem.202500618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
This article presents the synthesis and characterization of a series of robust high-valent organometallic nickel (Ni) complexes stabilized by a functionalized PC(sp3)P pincer ligand. Notably, the nickel center, covalently confined within the 3D ligand framework, demonstrates predictable coordination and redox behavior, coupled with remarkable stability across oxidation states +2, +3, and +4. These states were found to interconvert via one-electron transfer reactions. Among these complexes, the Ni(III)-PC(sp3)P species was identified as an efficient catalyst for the mild and selective hydrosilylation of alkenes, operating through a nonoxidative reaction mechanism.
Collapse
Affiliation(s)
- Nandita Biswas
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Rajarshi Mondal
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Kamal Uddin Ansari
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Roaa Yaseen
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University, Allendale, MI, 9190401, USA
| | - Stanislav Groysman
- Department of Chemistry, Wayne State University, Detroit, MI, 9190401, USA
| | - Daphna Shimon
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Dmitri Gelman
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| |
Collapse
|
2
|
Zada M, Zhang Q, Mahmood Q, Ma Y, Sun Y, Sun WH. A π-π interaction strategy for targeting highly thermostable bis(arylimino)pyridyliron precatalysts in ethylene polymerization. Dalton Trans 2025; 54:7676-7689. [PMID: 40235444 DOI: 10.1039/d5dt00571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The suboptimal catalytic performance of bis(arylimino)pyridyliron precatalysts in ethylene polymerization at elevated temperatures remains a significant challenge. In this study, a series of six bis(arylimino)pyridyliron chloride precatalysts with the incorporation of the benzosuberyl steric bulk were prepared and investigated for ethylene polymerization. Capping the axial sites of the iron center with the benzosuberyl steric bulk resulted in π-π interactions between the phenyl group and the chelate backbone, with a distance of ca. 3.293 Å for Fe3iPr, shorter than the sum of the van der Waals radii of carbon atoms (3.4 Å), as confirmed by single-crystal X-ray diffraction. These non-covalent interactions enhanced the thermal stability, catalytic activity, and polymer molecular weights. On activation with MAO or MMAO cocatalysts, these precatalysts exhibited the maximum activity of 2.53 × 107 gPE mol-1Fe h-1 at 80 °C and 1.88 × 107 gPE mol-1Fe h-1 at 100 °C, demonstrating their unprecedented thermal stability. The molecular weight of the produced polyethylene remained high, even at elevated temperatures. Moreover, ligand modifications had a pronounced impact on polymerization outcomes: the least sterically hindered complex, while producing comparatively lower molecular weight polyethylene, displayed higher activity and the most sterically hindered one showed the opposite tendency. The molecular weight dispersity of polyethylene showed a strong correlation with the precatalyst structure and reaction conditions. High melting points confirmed the presence of strictly linear structures with high vinyl end groups (up to 74%), as verified using 1H/13C NMR spectra. A comparison of structurally related iron precatalysts revealed significant improvements in both thermal stability and catalytic activity, attributed to the π-π interactions present in the current iron precatalysts.
Collapse
Affiliation(s)
- Muhammad Zada
- Department of Chemistry, Government Postgraduate College Khar, Bajaur 18650, Pakistan
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qiuyue Zhang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yang Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| |
Collapse
|
3
|
Yu SY, Wang XY, Sun XL, Gao Y, Zhao Y, Ning XS, Ji G, Lu Y, Yang J, Liu ZP, Tang Y. Cyano-functionalized polyethylenes from ethylene/acrylamide copolymerization. Nat Commun 2025; 16:2461. [PMID: 40074757 PMCID: PMC11903888 DOI: 10.1038/s41467-025-57489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Synthesizing functionalized polyethylenes via ethylene coordination copolymerization with fundamental low-cost vinyl polar monomers provides a very attractive approach. However, it is also very challenging as the functional group (FG) to be introduced onto the polyolefin chain is directly derived from the corresponding vinyl polar monomers (CH2 = CH-FG), which often cause catalyst poisoning due to the FG coordination to active metal center and β-X elimination during catalysis, etc. It is especially true for the synthesis of cyano-functionalized polyethylenes (PEs) via ethylene/acrylonitrile copolymerization, which can only rely on Pd catalysis with low activity. Here we present an approach utilizing binuclear Ni catalysis for ethylene/acrylamide copolymerization and the synthesis of cyano-functionalized PEs (>99%) with great activity up to 4.1 × 106 g/(mol cat·h). Extensive polymer characterizations (NMR, GPC, model experiments, etc) confirm significant chain transfer and the conversion of amide to nitrile during catalysis. Mechanistic investigations, including comprehensive control experiments, deuterium labeling and computational studies, support an isomerization-mediated chain transfer polymerization (ICTP) mechanistic pathway, which include tandem acrylamide enchainment, amido group conversion into CN group, and active catalyst regeneration by Et2AlCl. Catalyst poisoning could be largely circumvented by this catalyst system.
Collapse
Affiliation(s)
- Shu-Yang Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yanshan Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Yanan Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao-Shan Ning
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Gang Ji
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Lu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Pan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Odenwald L, Wursthorn L, Mecking S. Irreversible Deactivation Pathways in Ni(II)-Catalyzed Nonalternating Ethylene-Carbon Monoxide Copolymerization. J Am Chem Soc 2025; 147:7182-7186. [PMID: 39969111 PMCID: PMC11887445 DOI: 10.1021/jacs.4c16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Endowing polyethylenes with photodegradability via incorporation of low densities of in-chain keto units could reduce the problematic environmental persistency of littered polymer waste. A breakthrough enabling such materials is the recent finding of nickel catalyzed nonalternating copolymerization of ethylene-carbon monoxide. We reveal irreversible catalyst deactivation pathways operative in this reaction. Reductive elimination of the common phosphinephenolate Ni(II) motif occurs with the acyl intermediates formed upon incorporation of carbon monoxide into the growing chain, as observed by low temperature NMR spectroscopy and single crystal X-ray crystallography of the isolated product. Further, we show that such decomposition pathways are generally relevant during ethylene-carbon monoxide copolymerizations under pressure reactor conditions. These findings guide the development of more stable and productive polymerization catalysts to enable the production of environmentally benign polyethylenes.
Collapse
Affiliation(s)
- Lukas Odenwald
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Lukas Wursthorn
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
5
|
Chen J, Qu S, Li X, Wei Y, Li Q, Wen Z, Guo Z. Single-Site Catalyst for the Synthesis of Disentangled Ultra-High-Molecular-Weight Polyethylene. Polymers (Basel) 2025; 17:95. [PMID: 39795497 PMCID: PMC11723197 DOI: 10.3390/polym17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 01/13/2025] Open
Abstract
Disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the in situ polymerization of ethylene by single-site catalysts. The effect of single-site catalysts and polymerization conditions on the molecular characteristics is discussed in detail from the perspective of mechanism and DFT calculations. The key factors to low entanglement are revealed, which have instructive implications for the development of new single-site catalytic systems that can generate d-UHMWPE more efficiently and become closer to industrial production. The progress in the preparation for nascent d-UHMWPE with homogeneous and heterogeneous single-site catalysts is systematically reviewed. Rheology and DSC can be used to characterize the degree of entanglement. High-modulus and high-strength biaxial films, tapes, and fibers are obtained by the solid-state processing of these nascent d-UHMWPE.
Collapse
Affiliation(s)
- Jian Chen
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China; (S.Q.); (X.L.); (Y.W.); (Q.L.); (Z.W.)
| | | | | | | | | | | | - Zifang Guo
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China; (S.Q.); (X.L.); (Y.W.); (Q.L.); (Z.W.)
| |
Collapse
|
6
|
Gao Z, Tian J, Han Y, Liu S, Li Z. Zirconium and Hafnium Complexes Bearing Tridentate ONN-Ligands: Extremely High Activity toward Ethylene (Co)Polymerization. Inorg Chem 2024; 63:18137-18145. [PMID: 39287224 DOI: 10.1021/acs.inorgchem.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The pursuit of high-performance catalysts in the realm of polyolefins is a constant goal. In this study, a range of zirconium (1-ZrCl3, 2-ZrCl3, 3-ZrCl4, 12-Zr) and hafnium (1-HfCl3, 12-Hf) complexes featuring phenoxy-imine-amine ONN-ligands (2,6-R2-C6H3-NH-C6H4-N═CH-C6H2-3,5-tBu2-OH; 1-L: R = H; 2-L: R = F; 3-L: R = iPr) were synthesized and characterized using NMR spectroscopy, as well as single-crystal X-ray diffraction for 2-ZrCl3, 3-ZrCl4, and 12-Zr. These Zr and Hf complexes exhibited remarkable efficiency for ethylene homopolymerization and copolymerization with 1-octene when paired with MAO as the cocatalyst. Notably, the Zr complexes outperformed the Hf complexes with the same ligand, underscoring the substantial impact of the metal center on catalytic performance. The substituents and coordination modes of the ligands also exerted significant influence on the catalytic behavior, affecting both the activity and properties of the resulting polymers. Particularly noteworthy was the exceptional activity of 1-ZrCl3, achieving activity as high as 6.30 × 108 g(PE)·mol-1(Zr)·h-1 for ethylene homopolymerization and generating bi- or multimodal distribution polyethylene. The activation of 1-ZrCl3 by 5 or 20 equiv of d-MAO afforded a dinuclear Zr complex bridged by two chlorides (μ-Cl2-(1-ZrCl2)2), which was analyzed and confirmed by in situ 1H NMR spectroscopy and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhihao Gao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingxia Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
7
|
Baur M, Habé R, Mecking S. Aqueous Keto-Polyethylene Dispersions from Catalytic Copolymerization of Ethylene and Carbon Monoxide in Water. ACS Macro Lett 2024; 13:841-846. [PMID: 38913329 PMCID: PMC11256749 DOI: 10.1021/acsmacrolett.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Water-soluble [P,O]Ni(II) catalysts enable the direct catalytic nonalternating copolymerization of fundamental comonomers ethylene and carbon monoxide (CO) in water as an environmentally friendly reaction medium. This yields stable aqueous dispersions of high molecular weight polyethylene containing ∼1 mol % of largely isolated in-chain keto groups in the form of particles with sizes between 100 nm and 1 μm. The intermediate species of chain growth resulting from incorporation of polar comonomers are amenable to specific chain termination pathways in conjunction with water.
Collapse
Affiliation(s)
- Maximilian Baur
- Chair of Chemical Materials
Science, Department of Chemistry, University
of Konstanz, 78464 Konstanz, Germany
| | - Rosa Habé
- Chair of Chemical Materials
Science, Department of Chemistry, University
of Konstanz, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials
Science, Department of Chemistry, University
of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
8
|
Liu Y, Wang C, Mu H, Jian Z. Aqueous Coordination-Insertion Copolymerization for Producing High Molecular Weight Polar Polyolefins. Angew Chem Int Ed Engl 2024; 63:e202404392. [PMID: 38548659 DOI: 10.1002/anie.202404392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Hydrocarbons, when used as the medium for transition metal catalyzed organic reactions and olefin (co-)polymerization, are ubiquitous. Environmentally friendly water is highly attractive and long-sought, but is greatly challenging as coordination-insertion copolymerization reaction medium of olefin and polar monomers. Unfavorable interactions from both water and polar monomer usually lead to either catalyst deactivation or the formation of low-molecular-weight polymers. Herein, we develop well-behaved neutral phosphinophenolato nickel catalysts, which enable aqueous copolymerization of ethylene and diverse polar monomers to produce significantly high-molecular-weight linear polar polyolefins (219-549 kDa, 0.13-1.29 mol %) in a single-component fashion under mild conditions for the first time. These copolymerization reactions occur better in water than in hydrocarbons such as toluene. The dual characteristics of high molecular weight and the incorporation of a small amount of functional group result in improved surface properties while retain the desirable intrinsic properties of high-density polyethylene (HDPE).
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
De Stefano F, Baur M, De Rosa C, Mecking S. Keto-Polyethylenes with Controlled Crystallinity and Materials Properties from Catalytic Ethylene-CO-Norbornene Terpolymerization. Macromolecules 2024; 57:1072-1079. [PMID: 38370911 PMCID: PMC10867887 DOI: 10.1021/acs.macromol.3c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024]
Abstract
Recent advances in Ni(II) catalyzed, nonalternating catalytic copolymerization of ethylene with carbon monoxide (CO) enable the synthesis of in-chain keto-functionalized polyethylenes (keto-PEs) with high-density polyethylene-like materials properties. Addition of norbornene as a bulky, noncrystallizable comonomer during catalytic polymerization allows tuning of the crystallinity in these keto-PE materials by randomly incorporated norbornene units in the polymer chain, while molecular weights are not adversely affected. Such crystallinity-reduced keto-PEs are characterized as softer materials with better ductility and may therefore be more suited for, e.g., potential film applications.
Collapse
Affiliation(s)
- Fabio De Stefano
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, Napoli I-80126, Italy
| | - Maximilian Baur
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Claudio De Rosa
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, Napoli I-80126, Italy
| | - Stefan Mecking
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
10
|
Li M, Cai Z, Eisen MS. Norbornene Copolymerization with Polar Monomers Catalyzed by Palladium Catalysts Containing Imidazolidin-2-imine/Guanidine Ligands. Inorg Chem 2024; 63:1774-1783. [PMID: 38104269 DOI: 10.1021/acs.inorgchem.3c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The development of a palladium catalyst that has enhanced catalytic performance, such as low aluminum cocatalyst loading, good copolymerization ability, high molecular weight, and excellent solubility of the (co)polymers, is still a challenge in norbornene copolymerizations. Here, a series of PdCl2 and PdMeCl complexes containing differently substituted anilines and imidazolidin-2-imine/guanidine ligands was successfully synthesized and characterized. X-ray diffraction analysis results revealed that these Pd complexes adopted an almost square-planar geometry, and the six-membered chelate ring showed structural distinctions as compared to traditional N^N-based α-diimine and β-diimine Pd complexes. These Pd complexes were activated by EtAlCl2 and then exhibited moderate activity (104-105 g mol-1 h-1) and good thermal stability (up to 90 °C) for norbornene polymerization to produce high-molecular-weight PNBs (Mn up to 96.4 kg mol-1) with narrow polydispersities (PDI as low as 1.39). These Pd complexes also exhibited good polar group tolerance in the copolymerization of norbornene with methyl 5-norbornene-2-carboxylate and methyl 10-undecenoate, in which the activity was achieved up to 7.04 × 104 g mol-1 h-1. It furnished polar functionalized norbornene-based copolymers with high molecular weight (Mn up to 63.1 kg mol-1), narrow PDI, reasonable polar monomer incorporation, and good solubility. These Pd catalysts exhibited an enhanced copolymerization ability to produce PNB or NB-based copolymers, representing significant progress in this field.
Collapse
Affiliation(s)
- Mingyuan Li
- Department of Chemistry, Guangdong Technion - Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Moris S Eisen
- Department of Chemistry, Guangdong Technion - Israel Institute of Technology, Shantou 515063, P. R. China
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
11
|
Lin F, Voccia M, Odenwald L, Göttker-Schnetmann I, Falivene L, Caporaso L, Mecking S. Origin of Suppressed Chain Transfer in Phosphinephenolato Ni(II)-Catalyzed Ethylene Polymerization. J Am Chem Soc 2023; 145:27950-27957. [PMID: 38103185 PMCID: PMC10755696 DOI: 10.1021/jacs.3c06597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Recent breakthroughs in the generation of polar-functionalized and more sustainable degradable polyethylenes have been enabled by advanced phosphinephenolato Ni(II) catalysts. A key has been to overcome this type of catalysts' propensity for extensive chain transfer to enable formation of high-molecular-weight polyethylene chains. We elucidate the mechanistic origin of this paradigm shift by a combined experimental and theoretical study. Single-crystal X-ray structural analysis and cyclic voltammetry of a set of six different catalysts with variable electronics and sterics, combined with extensive pressure reactor polymerization studies, suggest that an attractive Ni-aryl interaction of a P-[2-(aryl)phenyl] is responsible for the suppression of chain transfer. This differs from the established picture of steric shielding found for other prominent late transition metal catalysts. Extensive density functional theory studies identify the relevant pathways of chain growth and chain transfer and show how this attractive interaction suppresses chain transfer.
Collapse
Affiliation(s)
- Fei Lin
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Maria Voccia
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Lukas Odenwald
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Inigo Göttker-Schnetmann
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Laura Falivene
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Lucia Caporaso
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Stefan Mecking
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
12
|
Lu H, Kang X, Yu H, Zhang W, Luo Y. Using a single complex to predict the reaction energy profile: a case study of Pd/Ni-catalyzed ethylene polymerization. Dalton Trans 2023; 52:14790-14796. [PMID: 37807861 DOI: 10.1039/d3dt02745g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mechanism-driven catalyst screening could be greatly accelerated by quantitative prediction models of the reaction energy profile. Here, we propose a novel method for molecular representation, taking palladium- and nickel-catalyzed ethylene polymerization as model reactions. The geometric parameters (GPfra) and electron occupancies (EOfra) from the non-ligand fragment of the η3-complex were extracted as the molecular descriptors, followed by constructing the reaction energy profile prediction models on the basis of various regression algorithms. The models showed great accuracy with respect to both theoretical and experimental data. More importantly, the models are convenient for training and utilization. On one hand, all the features were easily captured from the single η3-complex. On the other hand, further investigation also demonstrated that the models could be constructed with a small training sample size. We believe that our featurization method could possibly be generalized to more organometallic reactions and paves the way to efficient catalyst design.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hang Yu
- Liaoning Key Laboratory of Clean Energy, Shenyang Aerospace University, Shenyang 110136, China
| | - Wenzhen Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
13
|
Li K, Cui L, Zhang Y, Jian Z. Amide-Functionalized Polyolefins and Facile Post-Transformations. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Zhang Z, Kang X, Jiang Y, Cai Z, Li S, Cui D. Access to Disentangled Ultrahigh Molecular Weight Polyethylene via a Binuclear Synergic Effect. Angew Chem Int Ed Engl 2023; 62:e202215582. [PMID: 36418237 DOI: 10.1002/anie.202215582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Disentangled ultrahigh molecular weight polyethylene (dis-UHMWPE) has excellent processability but can be achieved under extreme conditions. Herein, we report ethylene polymerization with the binuclear half-sandwich scandium complexes C1-Sc2 and C2-Sc2 to afford UHMWPE. C1-Sc2 bearing a short linker shows higher activity and gives higher molecular weight PEs than C2-Sc2 containing a flexible spacer and the mononuclear Sc1 . Strikingly, all UHMWPEs isolated from C1-Sc2 under broad temperature range (25-120 °C) and wide ethylene pressures (2-13 bar) feature very low degree of entanglement as proved by rheological test, DSC annealing study and SEM. These dis-UHMWPEs are facilely mediated solid-state-process at 130 °C and their tensile strength and modulus reach up to 149.2 MPa and 1.5 GPa, respectively. DFT simulations reveal that the formation of dis-UHMWPE is attributed to the binuclear synergic effect and the agostic interaction between the active center and the growing chain.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, 116044, Dalian, China
| | - Yang Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zhongyi Cai
- Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China
| | - Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
15
|
Lu Z, Xu X, Luo Y, He S, Fan W, Dai S. Unexpected Effect of Catalyst’s Structural Symmetry on the Branching Microstructure of Polyethylene in Late Transition Metal Polymerization Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhou Lu
- School of Chemical and Environmental Engineering, Anhui University, Wuhu, Anhui 241000, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Polytechnic University, Hefei, Anhui 230601, China
| | - Xiaowei Xu
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Yi Luo
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shengbao He
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Polytechnic University, Hefei, Anhui 230601, China
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui University, Wuhu, Anhui 241000, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Polytechnic University, Hefei, Anhui 230601, China
| |
Collapse
|
16
|
Zhang Y, Zhang Y, Hu X, Wang C, Jian Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Developments in late transition metal catalysts with high thermal stability for ethylene polymerization: A crucial aspect from laboratory to industrialization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Baur M, Mecking S. Polyethylenes with Combined In-Chain and Side-Chain Functional Groups from Catalytic Terpolymerization of Carbon Monoxide and Acrylate. ACS Macro Lett 2022; 11:1207-1211. [PMID: 36162407 DOI: 10.1021/acsmacrolett.2c00459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear polyethylenes with a combination of incorporated in-chain keto as well as side-chain ester groups are formed by Ni(II)-catalyzed terpolymerization of ethylene, carbon monoxide, and methyl acrylate. These possess a random structure, with largely isolated nonalternating in-chain keto groups as well as ester-substituted units adjacent to the polyethylene chain, whereas the solid-state structure of polyethylene is retained. Molecular weights of the terpolymers (Mn ∼ 20.000 g mol-1) are predominantly determined by chain transfer after acrylate incorporation.
Collapse
Affiliation(s)
- Maximilian Baur
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
19
|
Wang Q, Wang W, Qu W, Pang W, Qasim M, Zou C. Ethylene homo and copolymerization by phosphorus‐benzoquinone based homogeneous and heterogeneous nickel catalysts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Quan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenbing Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Weicheng Qu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Muhammad Qasim
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| |
Collapse
|
20
|
Synthesis of Ultra-High molecular weight polyethylene elastomers by para-tert-Butyl dibenzhydryl functionalized α-Diimine nickel catalysts at elevated temperature. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Hu X, Kang X, Jian Z. Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angew Chem Int Ed Engl 2022; 61:e202207363. [PMID: 35695787 DOI: 10.1002/anie.202207363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Abstract
Living polymerization by suppressing chain transfer is a very useful method for achieving precise molecular weight and structure control. However, the suppression of chain transfer at high temperatures is extremely challenging in any catalytic polymerization. This has been a severe limitation for catalytic olefin polymerization, which is one of the most important chemical reactions. Here, we report the unprecedented living polymerization of ethylene at 130 °C, with a narrow molecular weight distribution range of 1.04 to 1.08. This is a significant increase in the reaction temperature. Tailor-made α-diimine nickel catalysts that exhibit both the steric shielding and fluorine effects play an essential role in this breakthrough. These nickel catalysts are even active at 200 °C, and enable the formation of semi-crystalline, ultrahigh-molecular-weight polyethylene at 150 °C. Mechanistic insights into the key chain transfer reaction are elucidated by density functional theory calculations.
Collapse
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Ding B, Chang G, Yan Z, Dai S. Ethylene (co) oligomerization using iminopyridyl Ni(II) and Pd(II) complexes bearing benzocycloalkyl moieties to access hyperbranched ethylene oligomers and ethylene-MA co-oligomers. Front Chem 2022; 10:961426. [PMID: 35991594 PMCID: PMC9386154 DOI: 10.3389/fchem.2022.961426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperbranched ethylene oligomers and polar functionalized co-oligomers synthesized via ethylene chain walking (co) oligomerization is a very attractive strategy. In this study, a series of dibenzhydryl iminopyridyl ligands with benzocycloalkyl and naphthyl moieties and the corresponding Ni(II) and Pd(II) complexes were synthesized and characterized. The Ni(II) complexes were highly effective in ethylene oligomerization and ethylene oligomers with hyperbranched microstructures were generated from this system. The corresponding Pd(II) complexes showed moderate oligomerization activities in ethylene oligomerization and hyperbranched ethylene oligomers were also yielded from the system. More significantly, the Pd(II) complexes can also effectively promote the co-oligomerization of ethylene with methyl acrylate (MA) to obtain hyperbranched polar functionalized ethylene-MA co-oligomers. The reaction temperature, catalyst ligand structure and metal type all have significant effects on ethylene (co) oligomerization with respect to catalytic activity, molecular weight and topology of the oligomers.
Collapse
Affiliation(s)
- Beihang Ding
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
| | - Guanru Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Inorganic Functional Material, Huangshan University, Huangshan, China
| | - Zhengpeng Yan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
| | - Shengyu Dai
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
23
|
Ethylene (Co)oligomerization in Alkane Solvents Facilitated by Rigid-Flexible Double-Layer Steric Strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Chen J, Yan Z, Li Z, Dai S. Direct Synthesis of Chain-End Toluene Functionalized Hyperbranched Ethylene Oligomers. Polymers (Basel) 2022; 14:3049. [PMID: 35956564 PMCID: PMC9370379 DOI: 10.3390/polym14153049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chain-end functionalized polymers play an important role in the field of building complex macromolecular structures. In this study, we have synthesized and characterized four dibenzhydryl iminopyridine Ni(II) complexes bearing remote flexible substituents (Et and n-Bu) to provide hyperbranched ethylene oligomers in ethylene oligomerization with moderate to good activities. Most notably, toluene-end-functionalized hyperbranched ethylene oligomers were obtained under elevated temperature conditions and validated by NMR. The tandem catalysis of ethylene oligomerization and the subsequent Friedel-Crafts addition of the resulting unsaturated products to toluene molecules was proposed as the cause of the observed phenomenon.
Collapse
Affiliation(s)
- Jianhai Chen
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China;
| | - Zhengpeng Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Zhongyuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China;
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
25
|
Wang C, Kang X, Mu H, Jian Z. Positive Effect of Polar Solvents in Olefin Polymerization Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Hu X, Kang X, Jian Z. Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Xiaohui Kang
- College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
27
|
Karimi M, Arabi H, Sadjadi S. New advances in olefin homo and copolymerization using neutral, single component palladium/nickel complexes ligated by a phosphine-sulfonate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Direct synthesis of hyperbranched ethene oligomers and ethene‐
MA
co‐oligomers using iminopyridyl systems with weak neighboring group interactions. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Li K, Mu H, Kang X, Jian Z. Suppression of Chain Transfer and Promotion of Chain Propagation in Neutral Anilinotropone Nickel Polymerization Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Wang Y. Olefin polymerization cocatalysts: Development, applications, and prospects. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Cui L, Chu YK, Liu DJ, Han YF, Mu HL, Jian ZB. Enhancement on Hemilabile Phosphine-Amide Palladium and Nickel Catalysts for Ethylene (Co)Polymerization with Polar Monomers Using a Cyclizing Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Wang Y, Hu X, Mu H, Xia Y, Chi Y, Jian Z. Enhancement on Nickel-Mediated Ethylene Polymerization by Concerted Steric Hindrance and Fluorine Effect. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Zhang Y, Jian Z. Polar additive triggered chain walking copolymerization of ethylene and fundamental polar monomers. Polym Chem 2022. [DOI: 10.1039/d2py00934j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of a polar additive efficiently triggers chain walking copolymerization of ethylene with a broad scope of fundamental polar monomers, which is long-sought in an α-diimine Pd(ii) system.
Collapse
Affiliation(s)
- Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
34
|
Lin F, Morgen TO, Mecking S. Living Aqueous Microemulsion Polymerization of Ethylene with Robust Ni(II) Phosphinophenolato Catalysts. J Am Chem Soc 2021; 143:20605-20608. [PMID: 34851651 DOI: 10.1021/jacs.1c10488] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to chain transfer events being competitive with chain growth, ethylene polymerization by P,O-chelated Ni(II) complexes usually affords low molecular weight polymers or oligomers. We now show that appropriately bulky substituted phosphinophenolato Ni(II) can polymerize in a living fashion, virtually devoid of chain transfer. Aqueous polymerizations with microemulsions of [κ2-P,O-2-(2-(2',6'-(MeO)2C6H3)C6H4)(Ph)P-6-(3',5'-(CF3)2C6H3)C6H3O-NiMe(pyridine)] (3) at 30 °C yield polyethylenes with narrow molecular weight distributions (Mw/Mn 1.02 to 1.34) and ultrahigh molecular weights (up to 2 × 106) in the form of aqueous nanoparticle dispersions. Catalyst stability and activity are maintained up to 70 °C in water.
Collapse
Affiliation(s)
- Fei Lin
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Tobias O Morgen
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
35
|
A general cocatalyst strategy for performance enhancement in nickel catalyzed ethylene (co)polymerization. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Fan H, Chang G, Bi H, Gui X, Wang H, Xu G, Dai S. Facile Synthesis of Hyperbranched Ethylene Oligomers and Ethylene/Methyl Acrylate Co-oligomers with Different Microscopic Chain Architectures. ACS POLYMERS AU 2021; 2:88-96. [PMID: 36855342 PMCID: PMC9954315 DOI: 10.1021/acspolymersau.1c00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Low-molecular-weight (MW) ethylene oligomers with hyperbranched microstructures are often difficult to be synthesized by traditional catalytic processes. In this study, a series of N-terphenyl iminopyridyl ligands and the corresponding Pd(II) and Ni(II) complexes bearing remote conjugated substituents with different electronic effects (H, Me, F, Cl, and tBu) were synthesized in a simple and efficient way. These Pd(II) and Ni(II) complexes were highly effective in the ethylene oligomerization and co-oligomerization with methyl acrylate (MA). Low-MW ethylene oligomers with hyperbranched microstructures were generated using the iminopyridyl Pd(II) and Ni(II) complexes in ethylene oligomerization. More importantly, polar functionalized ethylene-MA co-oligomers with low MWs and varying incorporation ratios were generated via ethylene and MA co-oligomerization using the Pd(II) complexes. Most notably, these ethylene oligomers obtained by different metal species showed a significant difference in microscopic chain architectures. The remote conjugated electron effect showed little effect on the polymerization parameters of the iminopyridyl system, which is very different from those of the salicylaldiminato system.
Collapse
Affiliation(s)
- Huijun Fan
- Institutes
of Physical Science and Information Technology, Key Laboratory of
Structure and Functional Regulation of Hybrid Materials of Ministry
of Education, Anhui University, Hefei, Anhui 230601, China
| | - Guanru Chang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Inorganic
Functional Material, Huangshan University, Huangshan, Anhui 245041, China
| | - Huiqin Bi
- School
of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xu Gui
- School
of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Hui Wang
- School
of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China,
| | - Guoyong Xu
- Institutes
of Physical Science and Information Technology, Key Laboratory of
Structure and Functional Regulation of Hybrid Materials of Ministry
of Education, Anhui University, Hefei, Anhui 230601, China,
| | - Shengyu Dai
- Institutes
of Physical Science and Information Technology, Key Laboratory of
Structure and Functional Regulation of Hybrid Materials of Ministry
of Education, Anhui University, Hefei, Anhui 230601, China,School
of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China,
| |
Collapse
|
37
|
Li D, Ma F, Guo L, Huang J, Zhang Y, Li F, Li C. Polynuclear (α‐diimine) nickel(II) complex as catalyst for ethylene oligomerization. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dan Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
| | - Fengmin Ma
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
| | - Lijun Guo
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
| | - Jin Huang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology Daqing Normal University Daqing China
| | - Yu Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
| | - Cuiqin Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing China
| |
Collapse
|
38
|
Lu H, Kang X, Luo Y. Structure-Based Relative Energy Prediction Model: A Case Study of Pd(II)-Catalyzed Ethylene Polymerization and the Electronic Effect of Ancillary Ligands. J Phys Chem B 2021; 125:12047-12053. [PMID: 34694809 DOI: 10.1021/acs.jpcb.1c05143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapidly mapping a reaction energy profile to understand the reaction mechanism is of great importance and highly desired for the discovery of new chemical reactions. Herein, a combination of density functional theory (DFT) calculations and regression analysis has been applied to construct quantitative structures-based energy prediction models, considering Pd(II)-catalyzed ethylene polymerization as an example, for rapid construction of the reaction energy profile. It is inspiring that only geometrical parameters of the reaction center of one species are capable of predicting the whole energy profile with high accuracy. The reaction energies of ethylene insertion and β-H elimination, which directly correlate with polymerization activity and the possibility of branch formation, were studied to elucidate the electronic effects of ancillary ligands. Further analyses of these models from the statistical and chemical points of view afforded useful information on the design of the catalyst ligand. The current work is expected to methodologically shed new light on rapidly mapping the energy profile of chemical reactions and further provide useful information for the development of the reactions.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.,PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
39
|
Ji G, Chen Z, Wang XY, Ning XS, Xu CJ, Zhang XM, Tao WJ, Li JF, Gao Y, Shen Q, Sun XL, Wang HY, Zhao JB, Zhang B, Guo YL, Zhao Y, Sun J, Luo Y, Tang Y. Direct copolymerization of ethylene with protic comonomers enabled by multinuclear Ni catalysts. Nat Commun 2021; 12:6283. [PMID: 34725330 PMCID: PMC8560877 DOI: 10.1038/s41467-021-26470-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Ethylene/polar monomer coordination copolymerization offers an attractive way of making functionalized polyolefins. However, ethylene copolymerization with industrially relevant short chain length alkenoic acid remain a big challenge. Here we report the efficient direct copolymerization of ethylene with vinyl acetic acid by tetranuclear nickel complexes. The protic monomer can be extended to acrylic acid, allylacetic acid, ω-alkenoic acid, allyl alcohol, and homoallyl alcohol. Based on X-ray analysis of precatalysts, control experiments, solvent-assisted electrospray ionization-mass spectrometry detection of key catalytic intermediates, and density functional theory studies, we propose a possible mechanistic scenario that involves a distinctive vinyl acetic acid enchainment enabled by Ni···Ni synergistic effects. Inspired by the mechanistic insights, binuclear nickel catalysts are designed and proved much more efficient for the copolymerization of ethylene with vinyl acetic acid or acrylic acid, achieving the highest turnover frequencies so far for both ethylene and polar monomers simultaneously.
Collapse
Affiliation(s)
- Gang Ji
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhou Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Shan Ning
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chong-Jie Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Chemical Engineering, Soochow University, Suzhou, China
| | - Xing-Min Zhang
- School of Chemistry and Chemical Engineering, Soochow University, Suzhou, China
| | - Wen-Jie Tao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun-Fang Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yanshan Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qi Shen
- School of Chemistry and Chemical Engineering, Soochow University, Suzhou, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Hao-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun-Bo Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bo Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Yanan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jiajie Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
- Petrochina Petrochemical Research Institute, Beijing, China.
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
40
|
Half-sandwich chromium(III) complexes containing salicylbenzoxazole and salicylbenzothiazole ligands for ethylene polymerization. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Baur M, Lin F, Morgen TO, Odenwald L, Mecking S. Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization. Science 2021; 374:604-607. [PMID: 34709904 DOI: 10.1126/science.abi8183] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maximilian Baur
- University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Fei Lin
- University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Tobias O Morgen
- University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Lukas Odenwald
- University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
42
|
Schiebel E, Voccia M, Falivene L, Göttker‐Schnetmann I, Caporaso L, Mecking S. Neutral Unsymmetrical Coordinated Cyclophane Polymerization Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eva Schiebel
- Chair of Chemical Materials Science Department of Chemistry University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Maria Voccia
- Dipartimento di Chimica e Biologia Università di Salerno Via Papa Paolo Giovanni II 84084 Fisciano Italy
| | - Laura Falivene
- Dipartimento di Chimica e Biologia Università di Salerno Via Papa Paolo Giovanni II 84084 Fisciano Italy
| | - Inigo Göttker‐Schnetmann
- Chair of Chemical Materials Science Department of Chemistry University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia Università di Salerno Via Papa Paolo Giovanni II 84084 Fisciano Italy
| | - Stefan Mecking
- Chair of Chemical Materials Science Department of Chemistry University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
43
|
Schiebel E, Voccia M, Falivene L, Göttker-Schnetmann I, Caporaso L, Mecking S. Neutral Unsymmetrical Coordinated Cyclophane Polymerization Catalysts. Angew Chem Int Ed Engl 2021; 60:18472-18477. [PMID: 34038606 PMCID: PMC8456896 DOI: 10.1002/anie.202105401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/04/2022]
Abstract
Cyclophane structures can control steric pressure in the otherwise open spaces of square‐planar d8‐metal catalysts. This elegant concept was so far limited to symmetrical coordinated metals. We report how a cyclophane motif can be generated in ligands that chelate via two different donors. An ancillary second imine in the versatile κ2‐N,O‐salicylaldiminato catalyst type enables ring closure via olefin metathesis and selective double bond hydrogenation to yield a 30‐membered ring efficiently. Experimental and theoretical analyses show the ancillary imine is directed away from the active site and inert for catalysis. In ethylene polymerization the cyclophane catalyst is more active and temperature stable vs. an open structure reference, notably also in polar solvents. Increased molecular weights and decreased degrees of branching can be traced to an increased energy of sterically demanding transition states by the encircling cyclophane while chain propagation remains highly efficient.
Collapse
Affiliation(s)
- Eva Schiebel
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Maria Voccia
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, 84084, Fisciano, Italy
| | - Laura Falivene
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, 84084, Fisciano, Italy
| | - Inigo Göttker-Schnetmann
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, 84084, Fisciano, Italy
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
44
|
Hu X, Zhang Y, Li B, Jian Z. Fluorinated α-Diimine Nickel Mediated Ethylene (Co)Polymerization. Chemistry 2021; 27:11935-11942. [PMID: 34114692 DOI: 10.1002/chem.202101521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 11/10/2022]
Abstract
Fluorine substituents in transition metal catalysts are of great importance in olefin polymerization catalysis; however, the comprehensive effect of fluorine substituents is elusive in seminal late transition metal α-diimine catalytic system. In this contribution, fluorine substituents at various positions (ortho-, meta-, and para-F) and with different numbers (Fn ; n=0, 1, 2, 3, 5) were installed into the well-defined N-terphenyl amine and thus were studied for the first time in the nickel α-diimine promoted ethylene polymerization and copolymerization with polar monomers. The position of the fluorine substituent was particularly crucial in these polymerization reactions in terms of catalytic activity, polymer molecular weight, branching density, and incorporation of polar monomer, and thus a picture on the fluorine effect was given. As a notable result, the ortho-F substituted α-diimine nickel catalyst produced highly linear polyethylenes with an extremely high molecular weight (Mw =8703 kDa) and a significantly low degree of branching of 1.4/1000 C; however, the meta-F and/or para-F substituted α-diimine nickel catalysts generated highly branched (up to 80.2/1000 C) polyethylenes with significantly low molecular weights (Mw =20-50 kDa).
Collapse
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Baixiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
45
|
Hu X, Zhang Y, Li B, Jian Z. Horizontally and Vertically Concerted Steric Strategy in
α‐Diimine
Nickel Promoted Ethylene (Co)Polymerization
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
| | - Baixiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
46
|
Li Q, Wang C, Mu H, Jian Z. A readily available neutral nickel catalyst for accessing linear ultrahigh molecular weight polyethylene in a living manner. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Cruz TFC, Figueira CA, Veiros LF, Gomes PT. Benzylnickel(II) Complexes of 2-Iminopyrrolyl Chelating Ligands: Synthesis, Structure, and Catalytic Oligo-/Polymerization of Ethylene to Hyperbranched Polyethylene. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tiago F. C. Cruz
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1000-049 Lisboa, Portugal
| | - Cláudia A. Figueira
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1000-049 Lisboa, Portugal
| | - Luís F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1000-049 Lisboa, Portugal
| | - Pedro T. Gomes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1000-049 Lisboa, Portugal
| |
Collapse
|
48
|
Schiebel E, Voccia M, Falivene L, Caporaso L, Mecking S. The Impact of Charge in a Ni(II) Polymerization Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Eva Schiebel
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Maria Voccia
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Laura Falivene
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Papa Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
49
|
Zhang Y, Jian Z. Polar Additive Triggered Branching Switch and Block Polyolefin Topology in Living Ethylene Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
50
|
Abstract
Polyolefins are produced in vast amounts and are found in so many consumer products that the two most commonly produced forms, polyethylene (PE) and polypropylene (PP), fall into the rather sparse category of molecules that are likely to be known by people worldwide, regardless of their occupation. Although widespread, the further upgrading of their properties (mechanical, physical, aesthetic, etc.) through the formation of composites with other materials, such as polar polymers, fibers, or talc, is of huge interest to manufacturers. To improve the affinity of polyolefins toward these materials, the inclusion of polar functionalities into the polymer chain is essential. The incorporation of a functional group to trigger controlled polymer degradation is also an emerging area of interest. Currently practiced methods for the incorporation of polar functionalities, such as post-polymerization functionalization, are limited by the number of compatible polar monomers: for example, grafting maleic anhydride is currently the sole method for practical functionalization of PP. In contrast, the incorporation of fundamental polar comonomers into PE and PP chains via coordination insertion polymerization offers good control, making it a highly sought-after process. Early transition metal catalysts (which are commonly used for the production of PE and PP) display poor tolerance toward the functional groups within polar comonomers, limiting their use to less-practical derivatives. As late transition metal catalysts are less-oxophilic and thus more tolerant to polar functionalities, they are ideal candidates for these reactions. This Account focuses on the copolymerization of propylene with polar comonomers, which remains underdeveloped as compared to the corresponding reaction using ethylene. We begin with the challenges associated with the regio- and stereoselective insertion of propylene, which is a particular problem for late transition metal systems because of their propensity to undergo chain walking processes. To overcome this issue, we have investigated a range of metal/ligand combinations. We first discuss attempts with group 4 and 8 metal catalysts and their limitations as background, and then focus on the copolymerization of propylene with methyl acrylate (MA) using Pd/imidazolidine-quinolinolate (IzQO) and Pd/phosphine-sulfonate (PS) precatalysts. Each generated regioregular polymer, but while the system featuring an IzQO ligand did not display any stereocontrol, that using the chiral PS ligand did. A further difference was found in the insertion mode of MA: the Pd/IzQO system inserted in a 1,2 fashion, while in the Pd/PS system a 2,1 insertion was observed. We then move onto recent results from our lab using Pd/PS and Pd/bisphosphine monoxide (BPMO) precatalysts for the copolymerization of propylene with allyl comonomers. These P-stereogeneic precatalysts generated the highest isotacticity values reported to date using late transition metal catalysts. This section closes with our work using Earth-abundant nickel catalysts for the reaction, which would be especially desired for industrial applications: a Ni/phosphine phenolate (PO) precatalyst yielded regioregular polypropylene with the incorporation of some allyl monomers into the main polymer chain. The installation of a chiral menthyl substituent on the phosphine allowed for moderate stereoselectivity to be achieved, though the applicable polar monomers currently remain limited. The Account concludes with a discussion of the factors that affect the insertion mode of propylene and polar comonomers in copolymerization reactions, beginning with our recent computational study, and finishing with work from ourselves and others covering both comonomer and precatalyst steric and electronic profiles with reference to the observed regioselectivity.
Collapse
Affiliation(s)
- Stephen L. J. Luckham
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|