1
|
Watanabe H, Iwamura M, Nozaki K, Takanashi T, Kuramochi H, Tahara T. Torsional Structural Relaxation Caused by Pt-Pt Bond Formation in the Photoexcited Dimer of Pt(II) N ̂ C ̂ N Complex in Solution. J Phys Chem Lett 2025; 16:406-414. [PMID: 39737549 DOI: 10.1021/acs.jpclett.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
[Pt(NCN)MeCN]+ (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN]+ dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm-1 oscillations arising from the Pt-Pt stretching motion in the S1 dimer. The excited-state absorption in the 500-700 nm region increases with time constants of 0.3, 1.4, and 9.4 ps, which are assigned to contraction of the Pt-Pt distance, structural change in the S1 dimer, and S1 → T1 intersystem crossing, respectively. The 1.4 ps structural change is attributed to torsional structural relaxation proceeding in the S1 dimer based on the computation, which indicates that a torsional angle around the Pt-Pt bond in the S0 dimer is widely distributed around two potential minima, whereas that of the S1 dimer has much narrower distributions around noticeably different torsional angles.
Collapse
Affiliation(s)
- Honoka Watanabe
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Munetaka Iwamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Tsukasa Takanashi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Ki H, Gu J, Cha Y, Lee KW, Ihee H. Projection to extract the perpendicular component (PEPC) method for extracting kinetics from time-resolved data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034103. [PMID: 37388296 PMCID: PMC10306411 DOI: 10.1063/4.0000189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Time-resolved x-ray liquidography (TRXL) is a potent method for investigating the structural dynamics of chemical and biological reactions in the liquid phase. It has enabled the extraction of detailed structural aspects of various dynamic processes, the molecular structures of intermediates, and kinetics of reactions across a wide range of systems, from small molecules to proteins and nanoparticles. Proper data analysis is key to extracting the information of the kinetics and structural dynamics of the studied system encrypted in the TRXL data. In typical TRXL data, the signals from solute scattering, solvent scattering, and solute-solvent cross scattering are mixed in the q-space, and the solute kinetics and solvent hydrodynamics are mixed in the time domain, thus complicating the data analysis. Various methods developed so far generally require prior knowledge of the molecular structures of candidate species involved in the reaction. Because such information is often unavailable, a typical data analysis often involves tedious trial and error. To remedy this situation, we have developed a method named projection to extract the perpendicular component (PEPC), capable of removing the contribution of solvent kinetics from TRXL data. The resulting data then contain only the solute kinetics, and, thus, the solute kinetics can be easily determined. Once the solute kinetics is determined, the subsequent data analysis to extract the structural information can be performed with drastically improved convenience. The application of the PEPC method is demonstrated with TRXL data from the photochemistry of two molecular systems: [Au(CN)2-]3 in water and CHI3 in cyclohexane.
Collapse
Affiliation(s)
| | | | | | | | - H. Ihee
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
4
|
Montoya-Castillo A, Chen MS, Raj SL, Jung KA, Kjaer KS, Morawietz T, Gaffney KJ, van Driel TB, Markland TE. Optically Induced Anisotropy in Time-Resolved Scattering: Imaging Molecular-Scale Structure and Dynamics in Disordered Media with Experiment and Theory. PHYSICAL REVIEW LETTERS 2022; 129:056001. [PMID: 35960558 DOI: 10.1103/physrevlett.129.056001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Time-resolved scattering experiments enable imaging of materials at the molecular scale with femtosecond time resolution. However, in disordered media they provide access to just one radial dimension thus limiting the study of orientational structure and dynamics. Here we introduce a rigorous and practical theoretical framework for predicting and interpreting experiments combining optically induced anisotropy and time-resolved scattering. Using impulsive nuclear Raman and ultrafast x-ray scattering experiments of chloroform and simulations, we demonstrate that this framework can accurately predict and elucidate both the spatial and temporal features of these experiments.
Collapse
Affiliation(s)
| | - Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Sumana L Raj
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Kenneth A Jung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Kasper S Kjaer
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Tobias Morawietz
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
5
|
Yong H, Keefer D, Mukamel S. Imaging Purely Nuclear Quantum Dynamics in Molecules by Combined X-ray and Electron Diffraction. J Am Chem Soc 2022; 144:7796-7804. [DOI: 10.1021/jacs.2c01311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Jeong H, Ki H, Kim JG, Kim J, Lee Y, Ihee H. Sensitivity of
time‐resolved
diffraction data to changes in internuclear distances and atomic positions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haeyun Jeong
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| |
Collapse
|
7
|
Kim Y, Ma R, Lee J, Harich J, Nam D, Kim S, Kim M, Ochmann M, Eom I, Huse N, Lee JH, Kim TK. Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:12165-12172. [PMID: 34914396 DOI: 10.1021/acs.jpclett.1c02400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Junho Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | | | | | - Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|