1
|
Xue Y, Hou SH, Zhang X, Zhang FM, Zhang XM, Tu YQ. Total Synthesis of the Hexacyclic Sesterterpenoid Niduterpenoid B via Structural Reorganization Strategy. J Am Chem Soc 2024; 146:25445-25450. [PMID: 39235150 DOI: 10.1021/jacs.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
To date, it remains challenging to precisely and efficiently construct structurally intriguing polycarbocycles with densely packed stereocenters in organic synthesis. Niduterpenoid B, a naturally occurring ERα inhibitor, exemplifies this complexity with its intricate polycyclic network comprising 5 cyclopentane and 1 cyclopropane rings, featuring 13 contiguous stereocenters, including 4 all-carbon quaternary centers. In this work, we describe the first total synthesis of niduterpenoid B using a structural reorganization strategy. Key features include the following: (1) an efficient methoxy-controlled cascade reaction that precisely forges a highly functionalized tetraquinane (A-D rings) bearing sterically hindered contiguous quaternary stereocenters; (2) a rhodium-catalyzed [1 + 2] cycloaddition that facilitates the construction of a strained 3/5 bicycle (E-F rings) angularly fused with ring D.
Collapse
Affiliation(s)
- Yuan Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Zhang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Yue G, Liu B. Recent Developments in the Syntheses of C-20-Oxygenated ent-Kaurane Diterpenoids. Chempluschem 2024; 89:e202300676. [PMID: 38414152 DOI: 10.1002/cplu.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Ent-kaurane diterpenes are a large group of natural products, with more than 1,000 compounds since their discovery. Due to their excellent biological activities and complex polycyclic structures, these compounds have attracted organic synthesis chemists around the world to be devoted to achieve their total synthesis. At present, the isolated C-20-oxygenated ent-kaurane diterpenes are the most abundant of these natural products, reaching more than 350 in number. However, only total syntheses of 3,20-epoxy, 7,20-epoxy and 19,20-lactone ent-kaurane diterpenes have been reported. In this review, we elaborate the synthesis of these three types of C-20 oxygenated ent-kaurane natural products, discuss these synthetic strategies in detail, and provide good guidance and reference for the synthesis of other C-20 oxygenated compounds.
Collapse
Affiliation(s)
- Guizhou Yue
- College of Science, Sichuan Agricultural University, 46 Xinkang Rd., Ya'an, Sichuan, 625014, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
3
|
Stadel JT, Back TG. Asymmetric Synthesis with Organoselenium Compounds - The Past Twelve Years. Chemistry 2024; 30:e202304074. [PMID: 38199954 DOI: 10.1002/chem.202304074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
The discovery and synthetic applications of novel organoselenium compounds and their reactions proceeded rapidly during the past fifty years and such processes are now carried out routinely in many laboratories. At the same time, the growing demand for new enantioselective processes provided new challenges. The convergence of selenium chemistry and asymmetric synthesis led to key developments in the 1970s, although the majority of early work was based on stoichiometric processes. More recently, greater emphasis has been placed on greener catalytic variations, along with the discovery of novel reactions and a deeper understanding of their mechanisms. The present review covers the literature in this field from 2010 to early 2023 and encompasses asymmetric reactions mediated by chiral selenium-based reagents, auxiliaries, and especially, catalysts. Protocols based on achiral selenium compounds in conjunction with other species of chiral catalysts, as well as reactions that are controlled by chiral substrates, are also included.
Collapse
Affiliation(s)
- Jessica T Stadel
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
4
|
Sennari G, Yamagishi H, Sarpong R. Remote C-H Amination and Alkylation of Camphor at C8 through Hydrogen-Atom Abstraction. J Am Chem Soc 2024; 146:7850-7857. [PMID: 38447162 DOI: 10.1021/jacs.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Camphor continues to serve as a versatile chiral building block for chemical synthesis. We have developed a novel method to functionalize the camphor skeleton at C8 using an intramolecular hydrogen atom abstraction. The key advance involves the use of a camphor-derived aminonitrile, which is converted to the corresponding nitrogen-centered radical under photoredox conditions to effect the 1,5-hydrogen atom transfer at C8. The resulting carbon-centered radical at C8 was utilized in a C-H amination to access topologically complex proline derivatives. Furthermore, the total synthesis of several sesquiterpenoids was accomplished by engaging the radical generated at C8 in alkylation reactions.
Collapse
Affiliation(s)
- Goh Sennari
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Yamagishi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Yoshioka K, Iwasaki H, Hanaki M, Ito S, Iwamoto Y, Ichihara R, Nambu H. A SmI 2-mediated reductive cyclisation reaction using the trifluoroacetamide group as the radical precursor. Org Biomol Chem 2024; 22:1988-1992. [PMID: 38363092 DOI: 10.1039/d3ob02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A samarium(II)-mediated reductive cyclisation reaction with the aminoketyl radical from the trifluoroacetamide group for synthesising 2-trifluoromethylindolines was developed. This reaction is the first example of using an acyclic amide group, which is considered difficult to react with SmI2, in a reductive cyclisation. Additionally, the conversion of the obtained product into 2-trifluoromethylindole was achieved.
Collapse
Affiliation(s)
- Kota Yoshioka
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Hiroki Iwasaki
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Mako Hanaki
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Saho Ito
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Yuzuha Iwamoto
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Rio Ichihara
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Hisanori Nambu
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
6
|
Ting SI, Snelson DW, Huffman TR, Kuroo A, Sato R, Shenvi RA. Synthesis of (-)-Cotylenol, a 14-3-3 Molecular Glue Component. J Am Chem Soc 2023; 145:20634-20645. [PMID: 37683289 PMCID: PMC11022164 DOI: 10.1021/jacs.3c07849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Small molecules that modulate the 14-3-3 protein-protein interaction (PPI) network represent valuable therapeutics and tool compounds. However, access has been lost to 14-3-3 PPI molecular glues of the cotylenin class, leading to investigations into the practical chemical syntheses of congeners and analogues. Here we report a concise synthesis of (-)-cotylenol via a 10-step asymmetric entry into a diversifiable 5-8-5 core. This route features a mild Liebeskind-Srogl fragment coupling that tolerates unprecedented steric hindrance to produce a highly congested ketone, and a tandem Claisen-ene cascade that establishes the 8-membered ring. Late-stage control of stereochemistry and functionality leads to (-)-cotylenol and sets the stage for focused library synthesis.
Collapse
Affiliation(s)
- Stephen I. Ting
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dylan W. Snelson
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tucker R. Huffman
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Akihiro Kuroo
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryota Sato
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Collins S, Sieber JD. Development of regiodivergent asymmetric reductive coupling reactions of allenamides to access heteroatom-rich organic compounds. Chem Commun (Camb) 2023; 59:10087-10100. [PMID: 37529849 DOI: 10.1039/d3cc03013j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Organic compounds of biological importance often contain multiple stereogenic C-heteroatom functional groups (e.g. amines, alcohols, and ethers). As a result, synthetic methods to access such compounds in a reliable and stereoselective fashion are important. In this feature article, we present a strategy to enable the introduction of multiple C-heteroatom functional groups in a regiodivergent cross-coupling approach through the use of reductive coupling chemistry employing allenamides. Such processes allow for opportunities to access different heteroatom substitution patterns from the same starting materials.
Collapse
Affiliation(s)
- Stephen Collins
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| | - Joshua D Sieber
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
8
|
Yoshinaga K, Yokoshima S. Convergent synthesis of the [5-7-6-3] tetracyclic core of premyrsinane diterpenes. Org Biomol Chem 2023; 21:724-727. [PMID: 36594461 DOI: 10.1039/d2ob02210a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The [5-7-6-3] tetracyclic core of premyrsinane diterpenes was convergently synthesized via the stereoselective three-component coupling of a 2-propenyl unit, an enone, and an aldehyde, followed by the relay ring-closing metathesis with conformation control of the substrate to construct the 7-membered ring.
Collapse
Affiliation(s)
- Kohei Yoshinaga
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
9
|
Solans MM, Basistyi VS, Law JA, Bartfield NM, Frederich JH. Programmed Polyene Cyclization Enabled by Chromophore Disruption. J Am Chem Soc 2022; 144:6193-6199. [PMID: 35377634 PMCID: PMC10559755 DOI: 10.1021/jacs.2c02144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new polyene cyclization strategy exploiting β-ionyl derivatives was developed. Photoinduced deconjugation of the extended π-system within these chromophores unveils a contrathermodynamic polyene that engages in a Heck bicyclization to afford [4.4.1]-propellanes. This cascade improves upon the limited regioselectivity achieved using existing biomimetic tactics and tolerates both electron-rich and electron-deficient (hetero)aryl groups. The utility of this approach was demonstrated with the diverted total synthesis of taxodione and salviasperanol, two isomeric abietane diterpenes that were previously inaccessible along the same synthetic pathway.
Collapse
Affiliation(s)
- Megan M Solans
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vitalii S Basistyi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James A Law
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Noah M Bartfield
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Zhou L, Zheng G, Li H, Gao B, Guoruoluo Y, Tang W, Yao G, Zhang Y. Highly oxygenated isoryanodane diterpenoids from the leaves of Cinnamomum cassia and their immunomodulatory activities. PHYTOCHEMISTRY 2022; 196:113077. [PMID: 34990976 DOI: 10.1016/j.phytochem.2021.113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A total of twelve highly oxygenated isoryanodane (also known as cinncassiol D-type) diterpenoids including nine undescribed ones, named cinnacassins A-I, were isolated from the leaves of Cinnamomum cassia. Their chemical structures were elucidated by extensive spectrometric and spectroscopic techniques including HRESIMS, 1D and 2D NMR, single-crystal X-ray diffraction analysis, calculated 13C-NMR DP4+ analysis, and chemical methods. The absolute configuration of cinnacassin A was unambiguously delineated by single-crystal X-ray diffraction analysis. Cinnacassin H represents the first example of 16-O-glucosylated isoryanodane diterpenoid, and cinnacassin I is the first isoryanod-13(18)-ene diterpenoid. The relationship of the configuration C-18 and the chemical shifts of H2-19 and C-20 in the 19-hydroxy-isoryanodane diterpenoids was discussed, and the 18S-configuration of three known 19-hydroxy-isoryanodane diterpenoids, cinncassiol D1, 19-O-β-D-glucopyranosyl-cinncassiol D1, and cinncassiol D3 was assigned. All the isolated isoryanodane diterpenoids were evaluated for their immunomodulatory effects in vitro, and cinnacassin A and cinncassiol D1 enhanced the proliferation of Con A-induced murine T cells with enhancement rates ranging from 17.9% to 45.4%, which were more potent than the positive control, thymosin α1. In addition, cinncassiol D1 significantly promoted the proliferation of LPS-induced murine B cells with an enhancement rate up to 116.1%, two-fold more potent than thymosin α1 at a concentration of 1.5625 μM.
Collapse
Affiliation(s)
- Lei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yindengzhi Guoruoluo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
11
|
Heravi MM, Nazari A. Samarium(ii) iodide-mediated reactions applied to natural product total synthesis. RSC Adv 2022; 12:9944-9994. [PMID: 35424959 PMCID: PMC8965710 DOI: 10.1039/d1ra08163b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/12/2022] [Indexed: 12/22/2022] Open
Abstract
Natural product synthesis remains a field in which new synthetic methods and reagents are continually being evaluated. Due to the demanding structures and complex functionality of many natural products, only powerful and selective methods and reagents will be highlighted in this proceeding. Since its introduction by Henri Kagan, samarium(ii) iodide (SmI2, Kagan's reagent) has found increasing use in chemical synthesis. Over the years, many reviews have been published on the application of SmI2 in numerous reductive coupling procedures as well as in natural product total synthesis. This review highlights recent advances in SmI2-mediated synthetic strategies, as applied in the total synthesis of natural products since 2004.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Azadeh Nazari
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
12
|
Dentani T, Kawachi A, Kato M, Yoshimura T, Matsuo JI. Cascade cyclization of 1,2,7,8-tetraones and total synthesis of (±)-nesteretal A. Org Chem Front 2022. [DOI: 10.1039/d2qo00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the short synthesis of highly oxidized complex molecules, regioselectivity and stereoselectivity of intramolecular domino aldol cyclization/acetalizations of 1,2,7,8-tetraones were investigated by using catalytic amounts of Brønsted bases, Brønsted acids,...
Collapse
|
13
|
Wong A, Fastuca NJ, Mak VW, Kerkovius JK, Stevenson SM, Reisman SE. Total Syntheses of the C 19 Diterpenoid Alkaloids (-)-Talatisamine, (-)-Liljestrandisine, and (-)-Liljestrandinine by a Fragment Coupling Approach. ACS CENTRAL SCIENCE 2021; 7:1311-1316. [PMID: 34471676 PMCID: PMC8393236 DOI: 10.1021/acscentsci.1c00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 05/04/2023]
Abstract
The C19 diterpenoid alkaloids (C19 DTAs) are a large family of natural products, many of which modulate the activity of ion channels in vivo and are therefore of interest for the study of neurological and cardiovascular diseases. The complex architectures of these molecules continue to challenge the state-of-the art in chemical synthesis, particularly with respect to efficient assembly of their polcyclic ring systems. Here, we report the total syntheses of (-)-talatisamine, (-)-liljestrandisine, and (-)-liljestrandinine, three aconitine-type C19 DTAs, using a fragment coupling strategy. Key to this approach is a 1,2-addition/semipinacol rearrangement sequence which efficiently joins two complex fragments and sets an all-carbon quaternary center.
Collapse
Affiliation(s)
- Alice
R. Wong
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Nicholas J. Fastuca
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Victor W. Mak
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jeffrey K. Kerkovius
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Susan M. Stevenson
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Announcing Accounts Journal Club. Acc Chem Res 2021; 54:1307-1308. [PMID: 33646751 DOI: 10.1021/acs.accounts.1c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|