1
|
AlSabeh G, Slama V, Ren M, Almalki M, Pfeifer L, Kubicki DJ, Zimmermann P, Hinderhofer A, Faini F, Moia D, Othman M, Eickemeyer FT, Carnevali V, Lempesis N, Vezzosi A, Ansari F, Schreiber F, Maier J, Wolff CM, Hessler-Wyser A, Ballif C, Grancini G, Rothlisberger U, Grätzel M, Milić JV. Aryl-Acetylene Layered Hybrid Perovskites in Photovoltaics. Angew Chem Int Ed Engl 2025; 64:e202417432. [PMID: 39797740 DOI: 10.1002/anie.202417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two-dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality. This can be ameliorated by extending the π-conjugation of the spacer cations. We demonstrate the capacity to access Ruddlesden-Popper and Dion-Jacobson 2D perovskites incorporating for the first time aryl-acetylene-based (4-ethynylphenyl)methylammonium (BMAA) and buta-1,3-diyne-1,4-diylbis(4,1-phenylene)dimethylammonium (BDAA) spacers, respectively. We assess their unique opto(electro)ionic characteristics by a combination of techniques and apply them in mixed-dimensional perovskite solar cells that show superior device performances with a power conversion efficiency of up to 23 % and higher operational stability, opening the way for multifunctionality in layered hybrid materials and their application.
Collapse
Affiliation(s)
- Ghewa AlSabeh
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Vladislav Slama
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne
| | - Ming Ren
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Masaud Almalki
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Future Energy Technology Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Dominik J Kubicki
- School of Chemistry, University of Birmingham, B15 2TT, Birmingham, UK
| | - Paul Zimmermann
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Fabiola Faini
- Physical Chemistry Department, University of Pavia, Via Torquato Taramelli, 14, 27100, Pavia PV, Italy
| | - Davide Moia
- Max-Planck-Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Mostafa Othman
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Virginia Carnevali
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne
| | - Nikolaos Lempesis
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne
| | - Andrea Vezzosi
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne
| | - Fatemeh Ansari
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Joachim Maier
- Max-Planck-Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Christian M Wolff
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| | - Aïcha Hessler-Wyser
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| | - Christophe Ballif
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Micro Engineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
- Centre d'Electronique et de Microtechnique (CSEM), Rue Jaquet-Droz 1, 2000, Neuchâtel, Switzerland
| | - Giulia Grancini
- Physical Chemistry Department, University of Pavia, Via Torquato Taramelli, 14, 27100, Pavia PV, Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
2
|
Ngai KH, Sun X, Zou X, Fan K, Wei Q, Li M, Li S, Lu X, Meng W, Wu B, Zhou G, Long M, Xu J. Charge Injection and Auger Recombination Modulation for Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309500. [PMID: 38447143 PMCID: PMC11095209 DOI: 10.1002/advs.202309500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Indexed: 03/08/2024]
Abstract
The inefficient charge transport and large exciton binding energy of quasi-2D perovskites pose challenges to the emission efficiency and roll-off issues for perovskite light-emitting diodes (PeLEDs) despite excellent stability compared to 3D counterparts. Herein, alkyldiammonium cations with different molecular sizes, namely 1,4-butanediamine (BDA), 1,6-hexanediamine (HDA) and 1,8-octanediamine (ODA), are employed into quasi-2D perovskites, to simultaneously modulate the injection efficiency and recombination dynamics. The size increase of the bulky cation leads to increased excitonic recombination and also larger Auger recombination rate. Besides, the larger size assists the formation of randomly distributed 2D perovskite nanoplates, which results in less efficient injection and deteriorates the electroluminescent performance. Moderate exciton binding energy, suppressed 2D phases and balanced carrier injection of HDA-based PeLEDs contribute to a peak external quantum efficiency of 21.9%, among the highest in quasi-2D perovskite based near-infrared devices. Besides, the HDA-PeLED shows an ultralong operational half-lifetime T50 up to 479 h at 20 mA cm‒2, and sustains the initial performance after a record-level 30 000 cycles of ON-OFF switching, attributed to the suppressed migration of iodide anions into adjacent layers and the electrochemical reaction in HDA-PeLEDs. This work provides a potential direction of cation design for efficient and stable quasi-2D-PeLEDs.
Collapse
Affiliation(s)
- Kwan Ho Ngai
- South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew Territories999077Hong Kong
| | - Xinwen Sun
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew Territories999077Hong Kong
| | - Xinhui Zou
- Department of Physics and William Mong Institute of Nano Science and TechnologyThe Hong Kong University of Science and TechnologyClear Water BayKowloon999077Hong Kong
| | - Kezhou Fan
- Department of Physics and William Mong Institute of Nano Science and TechnologyThe Hong Kong University of Science and TechnologyClear Water BayKowloon999077Hong Kong
| | - Qi Wei
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Mingjie Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
| | - Shiang Li
- Department of PhysicsThe Chinese University of Hong KongShatinNew Territories999077Hong Kong
| | - Xinhui Lu
- Department of PhysicsThe Chinese University of Hong KongShatinNew Territories999077Hong Kong
| | - Weiwei Meng
- South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Bo Wu
- South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Guofu Zhou
- South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Mingzhu Long
- South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Jianbin Xu
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew Territories999077Hong Kong
| |
Collapse
|
3
|
Wang Y, Zeng Z, Zhang Y, Zhang Z, Bi L, He A, Cheng Y, Jen AKY, Ho JC, Tsang SW. Unlocking the Ambient Temperature Effect on FA-Based Perovskites Crystallization by In Situ Optical Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307635. [PMID: 37714163 DOI: 10.1002/adma.202307635] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated. It is found that the typical solvent-coordinated intermediate phase in methylammonium lead iodide (MAPbI3) is absent in formamidinium lead iodide (FAPbI3), and nucleation is almost completed in FAPbI3 right after spin-coating. Interestingly, it is found that there is noticeable nuclei aggregation in Formamidinium (FA)-based perovskites even during the spin-coating process, which is usually only observed during the annealing in MAPbI3. Such aggregation is further promoted at a higher ambient temperature or in higher FA content. Instead of the general belief of stress release-induced crack formation, it is proposed that the origin of the cracks in FA-based perovskites is due to the aggregation-induced solute depletion effect. This work reveals the limiting factors for achieving high-quality FA-based perovskite films and helps to unlock the existing narrow processing window for future large-scale production.
Collapse
Affiliation(s)
- Yunfan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zixin Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuoqiong Zhang
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, 999077, China
| | - Leyu Bi
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Aoxi He
- College of Materials Science and Engineering and Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Yuanhang Cheng
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 21443, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), and Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), and Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Hazra V, Mondal S, Pattanayak P, Bhattacharyya S. Nanoplatelet Superlattices by Tin-Induced Transformation of FAPbI 3 Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304920. [PMID: 37817355 DOI: 10.1002/smll.202304920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Indexed: 10/12/2023]
Abstract
The transition from 3D to 2D lead halide perovskites is traditionally led by the lattice incorporation of bulky organic cations. However, the transformation into a coveted 2D superlattice-like structure by cationic substitution at the Pb2+ site of 3D perovskite is unfamiliar. It is demonstrated that the gradual increment of [Sn2+ ] alters the FASnx Pb1- x I3 nanocrystals into the Ruddlesden-Popper-like nanoplatelets (NPLs), with surface-absorbed oleic acid (OA) and oleylamine (OAm) spacer ligand at 80 °C (FA+ : formamidinium cation). These NPLs are stacked either by a perfect alignment to form the superlattice or by offsetting the NPL edges because of their lateral displacements. The phase transition occurs from the Sn/Pb ratio ≥0.011, with 0.64 wt% of Sn2+ species. At and above Sn/Pb = 0.022, the NPL superlattice stacks start to grow along [00l] with a repeating length of 4.37(3) nm, comprising the organic bilayer and the inorganic block having two octahedral layers (n = 2). Besides, a photoluminescence quantum yield of 98.4% is obtained with Sn/Pb = 0.011 (n ≥ 4), after surface passivation by trioctylphosphine (TOP).
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sudipta Mondal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Alaei A, Mohajerani SS, Schmelmer B, Rubio TI, Bendesky J, Kim MW, Ma Y, Jeong S, Zhou Q, Klopfenstein M, Avalos CE, Strauf S, Lee SS. Scaffold-Guided Crystallization of Oriented α-FAPbI 3 Nanowire Arrays for Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56127-56137. [PMID: 37987696 DOI: 10.1021/acsami.3c09434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Perovskite nanowire arrays with large surface areas for efficient charge transfer and continuous highly crystalline domains for efficient charge transport exhibit ideal morphologies for solar-cell active layers. Here, we introduce a room temperature two-step method to grow dense, vertical nanowire arrays of formamidinium lead iodide (FAPbI3). PbI2 nanocrystals embedded in the cylindrical nanopores of anodized titanium dioxide scaffolds were converted to FAPbI3 by immersion in a FAI solution for a period of 0.5-30 min. During immersion, FAPbI3 crystals grew vertically from the scaffold surface as nanowires with diameters and densities determined by the underlying scaffold. The presence of butylammonium cations during nanowire growth stabilized the active α polymorph of FAPbI3, precluding the need for a thermal annealing step. Solar cells comprising α-FAPbI3 nanowire arrays exhibited maximum solar conversion efficiencies of >14%. Short-circuit current densities of 22-23 mA cm-2 were achieved, on par with those recorded for the best-performing FAPbI3 solar cells reported to date. Such large photocurrents are attributed to the single-crystalline, low-defect nature of the nanowires and increased interfacial area for photogenerated charge transfer compared with thin films.
Collapse
Affiliation(s)
- Aida Alaei
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Seyed Sepehr Mohajerani
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Ben Schmelmer
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Thiago I Rubio
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Justin Bendesky
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Min-Woo Kim
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Yichen Ma
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Sehee Jeong
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Qintian Zhou
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Mia Klopfenstein
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Claudia E Avalos
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Stefan Strauf
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Stephanie S Lee
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
6
|
Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem Rev 2023; 123:9565-9652. [PMID: 37428563 DOI: 10.1021/acs.chemrev.3c00214] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Three-dimensional (3D) organic-inorganic lead halide perovskites have emerged in the past few years as a promising material for low-cost, high-efficiency optoelectronic devices. Spurred by this recent interest, several subclasses of halide perovskites such as two-dimensional (2D) halide perovskites have begun to play a significant role in advancing the fundamental understanding of the structural, chemical, and physical properties of halide perovskites, which are technologically relevant. While the chemistry of these 2D materials is similar to that of the 3D halide perovskites, their layered structure with a hybrid organic-inorganic interface induces new emergent properties that can significantly or sometimes subtly be important. Synergistic properties can be realized in systems that combine different materials exhibiting different dimensionalities by exploiting their intrinsic compatibility. In many cases, the weaknesses of each material can be alleviated in heteroarchitectures. For example, 3D-2D halide perovskites can demonstrate novel behavior that neither material would be capable of separately. This review describes how the structural differences between 3D halide perovskites and 2D halide perovskites give rise to their disparate materials properties, discusses strategies for realizing mixed-dimensional systems of various architectures through solution-processing techniques, and presents a comprehensive outlook for the use of 3D-2D systems in solar cells. Finally, we investigate applications of 3D-2D systems beyond photovoltaics and offer our perspective on mixed-dimensional perovskite systems as semiconductor materials with unrivaled tunability, efficiency, and technologically relevant durability.
Collapse
Affiliation(s)
- Isaac Metcalf
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jessica Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacky Even
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 35708 Rennes, France
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Gao Y, Dong X, Liu Y. Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers. NANO-MICRO LETTERS 2023; 15:169. [PMID: 37407722 PMCID: PMC10323068 DOI: 10.1007/s40820-023-01141-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Layered two dimensional (2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells (PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.
Collapse
Affiliation(s)
- Yuping Gao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
8
|
Ahmed MT, Islam S, Ahmed F. Exchange-correlation functional's impact on structural, electronic, and optical properties of (N 2H 5)PbI 3 perovskite. Heliyon 2023; 9:e17779. [PMID: 37449187 PMCID: PMC10336499 DOI: 10.1016/j.heliyon.2023.e17779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
One of the most popular multifunctional materials in optoelectronic research domains is organometallic perovskites. In this research, DFT calculation on Hydrazinium Lead Iodide (N2H5PbI3, HAPI) perovskite with orthorhombic phase has been studied with distinct exchange-correlation functionals. HAPI showed a slight structural deformation using the LDA CAPZ functionals, revealing the minimum total energy. A very slight change in Mulliken and Hirshfeld charges of each element was observed due to the variation of functionals. The GGA calculations resulted in a perfect orthorhombic phase of HAPI, whereas LDA functional showed slight deformation from the orthorhombic phase. The band gaps of 1.644, 1.633, 1.618, and 1.650 eV were obtained using GGA (PBE, PBEsol, PW91) and LDA (CAPZ) functionals, respectively. HAPI showed a high absorption coefficient of 104 cm-1 order with strong absorption of high energy visible wavelength. A maximum refractive index of 2.8 was observed in the visible wavelength region and a high optical conductivity of over 1015 s-1 suggests that HAPI can be a potential material for numerous optoelectronic research.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahmed
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shariful Islam
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
9
|
Mohamadpour F. Recyclable photocatalyst perovskite as a single-electron redox mediator for visible-light-driven photocatalysis gram-scale synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones in air atmosphere. Sci Rep 2023; 13:10262. [PMID: 37355768 DOI: 10.1038/s41598-023-37526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Based on the Biginelli reaction of β-ketoesters, arylaldehydes, and urea/thiourea, we created a green radical synthesis procedure for 3,4-dihydropyrimidin-2-(1H)-ones/thiones. A single-electron redox mediator was applied to a solution of ethanol in an air environment, at room temperature, and with blue LEDs as a renewable energy source in order to create. The objective of this research is to create a halide perovskite that is widely available, affordable, recyclable, and economically feasible. A factor mentioned in the discussion is that the procedure tolerates a variety of donating and withdrawing functional groups while still offering a very fast rate and excellent yields. The range of yields is quite uniform (86-94%, average: 90.4%), and the range of reaction times is very quick (4-8 min, average: 5.8 min). Furthermore, gram-scale cyclization shows that it is applicable for use in industry. Additionally, CsPbBr3 is quite stable and can be used six times in a row without experiencing significant structural changes or activity loss, which has been extremely helpful in meeting industrial needs and environmental issues.
Collapse
|
10
|
Liu M, Pauporté T. Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:134. [PMID: 37221320 PMCID: PMC10205963 DOI: 10.1007/s40820-023-01110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Because of their better chemical stability and fascinating anisotropic characteristics, Dion-Jacobson (DJ)-layered halide perovskites, which owe crystallographic two-dimensional structures, have fascinated growing attention for solar devices. DJ-layered halide perovskites have special structural and photoelectronic features that allow the van der Waals gap to be eliminated or reduced. DJ-layered halide perovskites have improved photophysical characteristics, resulting in improved photovoltaic performance. Nevertheless, owing to the nature of the solution procedure and the fast crystal development of DJ perovskite thin layers, the precursor compositions and processing circumstances can cause a variety of defects to occur. The application of additives can impact DJ perovskite crystallization and film generation, trap passivation in the bulk and/or at the surface, interface structure, and energetic tuning. This study discusses recent developments in additive engineering for DJ multilayer halide perovskite film production. Several additive-assisted bulk and interface optimization methodologies are summarized. Lastly, an overview of research developments in additive engineering in the production of DJ-layered halide perovskite solar cells is offered.
Collapse
Affiliation(s)
- Min Liu
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| | - Thierry Pauporté
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| |
Collapse
|
11
|
Liao CH, Mahmud MA, Ho-Baillie AWY. Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect transistors. NANOSCALE 2023; 15:4219-4235. [PMID: 36779248 DOI: 10.1039/d2nr06496k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal halide perovskite materials demonstrate immense potential for photovoltaic and electronic applications. In particular, two-dimensional (2D) layered metal halide perovskites have advantages over their 3D counterparts in optoelectronic applications due to their outstanding stability, structural flexibility with a tunable bandgap, and electronic confinement effect. This review article first analyzes the crystallography of different 2D perovskite phases [the Ruddlesden-Popper (RP) phase, the Dion-Jacobson (DJ) phase, and the alternating cations in the interlayer space (ACI) phase] at the molecular level and compares their common electronic properties, such as out-of-plane conductivity, crucial to vertical devices. This paper then critically reviews the recent development of optoelectronic devices, namely solar cells, photodetectors and field effect transistors, based on layered 2D perovskite materials and points out their limitations and potential compared to their 3D counterparts. It also identifies the important application-specific future research directions for different optoelectronic devices providing a comprehensive view guiding new research directions in this field.
Collapse
Affiliation(s)
- Chwen-Haw Liao
- School of Physics, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Md Arafat Mahmud
- School of Physics, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Anita W Y Ho-Baillie
- School of Physics, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
12
|
Xu Z, Dong X, Wang L, Wu H, Liu Y, Luo J, Hong M, Li L. Precisely Tailoring a FAPbI 3-Derived Ferroelectric for Sensitive Self-Driven Broad-Spectrum Polarized Photodetection. J Am Chem Soc 2023; 145:1524-1529. [PMID: 36629502 DOI: 10.1021/jacs.2c12300] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Benefiting from superior semiconducting properties and the angle-dependence of the bulk photovoltaic effect (BPVE) on polarized light, the two-dimensional (2D) hybrid perovskite ferroelectrics are developed for sensitive self-powered polarized photodetection. Most of the currently reported ferroelectric-driven polarized photodetection is restricted to the shortwave optical response, and expanding the response range is urgently needed. Here we report the first instance of a FAPbI3-derived (2D) perovskite ferroelectric, (BA)2(FA)Pb2I7 (1, BA is n-butylammonium, FA is formamidinium). It exhibited a notably high thermostability and broad-spectrum adsorption extending to around 650 nm. Significantly, 1 demonstrated ferroelectricity-driven self-powered polarized photodetection under 637 nm with an anisotropic photocurrent ratio of ∼1.96, ultrahigh detectivity of 3.34 × 1012 Jones, and long-term repetition. This research will shed light on the development of new ferroelectrics for potential application in broad-spectrum polarization-based optoelectronics.
Collapse
Affiliation(s)
- Zhijin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xin Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Huajie Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
13
|
Wang S, Li S, Zhao Q. A Low-Cost Synthetic Route of FAPbI 3 Quantum Dots in Air at Atmospheric Pressure: The Role of Zinc Iodide Additives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:226. [PMID: 36677978 PMCID: PMC9864327 DOI: 10.3390/nano13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Perovskite quantum dots (PQDs) have shown great promise in optoelectronic device applications. Typically, a traditional hot-injection method with heating and high vacuum pressure is used to synthesize these colloidal nanoparticles. In this article, we report a low-cost synthetic method for FAPbI3 PQDs in air at atmospheric pressure with the assistance of ZnI2. Compared with the FAPbI3 PQDs synthesized under vacuum/N2 condition, the air-synthesized Zn:FAPbI3 PQDs exhibit the same crystalline structure with a similar preferential crystallographic orientation but demonstrate higher colloidal stability and higher production yield. Furthermore, we examine the influence of ZnI2 during the synthesis process on morphologies and optoelectronic properties. The results show that the mean size of the obtained FAPbI3 PQDs is decreased by increasing the amount of added ZnI2. More importantly, introducing an optimal amount of ZnI2 into the Pb source precursor enables increasing the carrier lifetime of FAPbI3 PQDs, showing the potential beneficial effect on device performance.
Collapse
|
14
|
Sun W, Zhang SZ, Xue YJ, Mo LP, Zhang ZH. Perovskite as recyclable heterogeneous photocatalyst for synthesis of bis-1,3-dicarbonyl compounds. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Mishra A, Hope MA, Almalki M, Pfeifer L, Zakeeruddin SM, Grätzel M, Emsley L. Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films. J Am Chem Soc 2022; 144:15175-15184. [PMID: 35959925 PMCID: PMC9413210 DOI: 10.1021/jacs.2c05316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/26/2022]
Abstract
Surface and bulk molecular modulators are the key to improving the efficiency and stability of hybrid perovskite solar cells. However, due to their low concentration, heterogeneous environments, and low sample mass, it remains challenging to characterize their structure and dynamics at the atomic level, as required to establish structure-activity relationships. Nuclear magnetic resonance (NMR) spectroscopy has revealed a wealth of information on the atomic-level structure of hybrid perovskites, but the inherent insensitivity of NMR severely limits its utility to characterize thin-film samples. Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude, but DNP methods for perovskite materials have so far been limited. Here, we determined the factors that limit the efficiency of DNP NMR for perovskite samples by systematically studying layered hybrid perovskite analogues. We find that the fast-relaxing dynamic cation is the major impediment to higher DNP efficiency, while microwave absorption and particle morphology play a secondary role. We then show that the former can be mitigated by deuteration, enabling 1H DNP enhancement factors of up to 100, which can be harnessed to enhance signals from dopants or additives present in very low concentrations. Specifically, using this new DNP methodology at a high magnetic field and with small sample volumes, we have recorded the NMR spectrum of the 20 nm (6 μg) passivating layer on a single perovskite thin film, revealing a two-dimensional (2D) layered perovskite structure at the surface that resembles the n = 1 homologue but which has greater disorder than in bulk layered perovskites.
Collapse
Affiliation(s)
- Aditya Mishra
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael A. Hope
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masaud Almalki
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lukas Pfeifer
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shaik Mohammed Zakeeruddin
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Jin KH, Zhang Y, Li KJ, Sun ME, Dong XY, Wang QL, Zang SQ. Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angew Chem Int Ed Engl 2022; 61:e202205317. [PMID: 35560714 DOI: 10.1002/anie.202205317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/31/2022]
Abstract
Chiroptical hybrid organic-inorganic perovskites are emerging as a new class of promising materials with mirror optical signal responses for optoelectronic applications. However, chiroptical white-emission materials have been scarcely unearthed. Herein, four pairs of hybrid lead(II) bromide perovskitoids were obtained, namely, (R)- and (S)-(H2 MPz)PbBr4 (R/S-MPz=(R)-(-)/(S)-(+)-2-methylpiperazine) (1 and 2), (R)- and (S)-(H2 MPz)3 Pb2 Br10 ⋅2 DMAc (3 and 4), (R)- and (S)-(H2 MPz)PbBr4 ⋅0.5 MeCN (5 and 6) and (R)- and (S)-(H2 MPz)2 Pb2 Br8 ⋅DCM (7 and 8). Notably, they all exhibit ultrabroadband emission and chiroptical signals. Perovskitoids 3-6 even achieve white circularly polarized emission with a high dissymmetric factor (glum ) (±3×10-3 for 3 and 4; ±8×10-3 for 5 and 6). This new type of hybrid perovskitoids will attract attention and find applications in chiroptical fields because of the extensively and easily tunable photophysical properties.
Collapse
Affiliation(s)
- Kai-Hang Jin
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yue Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai-Jie Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
17
|
He S, Hao S, Lin J, Wang N, Cao J, Guo Z, Wolverton C, Zhao J, Liu Q. Photoluminescent Properties of Two-Dimensional Manganese(II)-Based Perovskites with Different-Length Arylamine Cations. Inorg Chem 2022; 61:11973-11980. [PMID: 35855614 DOI: 10.1021/acs.inorgchem.2c01730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The participation of organic cations plays an important role in tuning broad-spectra emissions. Herein, we synthesized a series of Mn(II)-based two-dimensional (2D) halide perovskites with arylamine cations of different lengths having the general formula (C6H5(CH2)xNH3)2MnCl4 (x = 1-4), with the x = 4 compound reported here for the first time. With the increase in the -(CH2)- in organic cations, the distance between adjacent inorganic layers increases, causing the title compounds to exhibit different structural distortions. As the Mn-Cl-Mn angular distortion increases, the experimental optical band gaps of the title compounds increase correspondingly. When the angle distortion between the octahedrons of the compounds is similar, the band gaps may also be affected by the distortion of the octahedron itself (the bond-length distortion of 2 is greater than that of 4). Under UV-light irradiation at 298 K, all of the compounds exhibit two emission peaks centered at 480-505 and 610 nm, corresponding to the organic-cation emission and the 4T1(G) to 6A1(S) radiative transition of Mn2+ ions, respectively. Among these title compounds, (PPA)2MnCl4 [(PPA)+ = C6H5(CH2)3NH3+] exhibits the strongest photoluminescence (PL). The study of the title compounds contributes to an in-depth understanding of the relationship between the structural distortion and optical properties of 2D Mn(II)-based perovskite materials.
Collapse
Affiliation(s)
- Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqiang Hao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Almalki M, Dučinskas A, Carbone LC, Pfeifer L, Piveteau L, Luo W, Lim E, Gaina PA, Schouwink PA, Zakeeruddin SM, Milić JV, Grätzel M. Nanosegregation in arene-perfluoroarene π-systems for hybrid layered Dion-Jacobson perovskites. NANOSCALE 2022; 14:6771-6776. [PMID: 35403184 PMCID: PMC9109678 DOI: 10.1039/d1nr08311b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/12/2022] [Indexed: 05/11/2023]
Abstract
Layered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analogue (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases. Moreover, their behaviour was probed in humid environments to reveal nanoscale segregation of layered perovskite species based on PDMA and F-PDMA components, along with enhanced stabilities of perfluoroarene systems, which is relevant to their application.
Collapse
Affiliation(s)
- Masaud Almalki
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Algirdas Dučinskas
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Loï C Carbone
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Laura Piveteau
- Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Weifan Luo
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Ethan Lim
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Patricia A Gaina
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Pascal A Schouwink
- Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1951 Sion, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Jovana V Milić
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
19
|
Jin KH, Zhang Y, Li KJ, Sun ME, Dong XY, Wang QL, Zang SQ. Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai-Hang Jin
- Nankai University College of Chemistry 300071 Tianjin CHINA
| | - Yue Zhang
- Nankai University College of Chemistry 300071 Tianjin CHINA
| | - Kai-Jie Li
- Zhengzhou University College of Chemistry 450001 Zhengzhou CHINA
| | - Meng-En Sun
- Zhengzhou University College of Chemistry 450001 Zhengzhou CHINA
| | - Xi-Yan Dong
- Zhengzhou University College of Chemistry 450001 Zhengzhou CHINA
| | - Qing-Lun Wang
- Nankai University College of Chemistry 300071 Tianjin CHINA
| | - Shuang-Quan Zang
- Zhengzhou University No 100. Kexue Avenue 450001 Zhengzhou CHINA
| |
Collapse
|
20
|
Chow AS, Zhong X, Fabini DH, Zeller M, Oertel CM. (C 5H 6N)Pb 2X 5 (X = Cl, Br): Hybrid Lead Halides Based on Seven-Coordinate Pb(II). Inorg Chem 2022; 61:6530-6538. [PMID: 35446573 DOI: 10.1021/acs.inorgchem.2c00351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybrid lead halides are a diverse family of compounds, of interest for their optoelectronic properties, that vary in the dimensionality and connectivity of their inorganic substructures. The great majority of these compounds are based on lead-centered octahedra, with few examples featuring inorganic architectures containing higher coordination numbers. Here, we report the synthesis and characterization of a pyridinium lead bromide phase that is based on seven-coordinate Pb(II) centers. Through edge- and face-sharing, the polyhedra form a corrugated, two-dimensional inorganic substructure. Electronic structure calculations were used to examine the band structure and the role of the stereoactive lone pair in the inherently asymmetric, seven-coordinate Pb(II) geometry. For reference, we have visualized the role of the lone pair in the binary halide PbBr2, which also has a seven-coordinate inner ligand sphere. A comparison of the new structure with the limited number of existing hybrid lead halides with similar inorganic architectures highlights the templating role of the organic cation for these compounds. We also contribute characterization and discussion of isomorphic pyridinium lead chloride, which had been deposited in the Cambridge Structural Database but never, to our knowledge, addressed in the literature. The compounds were synthesized using solution conditions and structures determined with single-crystal X-ray diffraction. The materials were also characterized via powder X-ray diffraction, combustion elemental analysis, and diffuse reflectance UV-vis spectroscopy. While the structures reported here are centrosymmetric, the seven-coordinate, capped trigonal prismatic geometry that we have identified is a source of local asymmetry that could be used as a component in designing globally noncentrosymmetric structures.
Collapse
Affiliation(s)
- Alyssa S Chow
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio 44074, United States
| | - Xinyue Zhong
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio 44074, United States
| | - Douglas H Fabini
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Catherine M Oertel
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio 44074, United States
| |
Collapse
|
21
|
Fu Y. Stabilization of Metastable Halide Perovskite Lattices in the 2D Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108556. [PMID: 35043477 DOI: 10.1002/adma.202108556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Indexed: 05/18/2023]
Abstract
Metal halide perovskites constitute a new class of semiconductors that are structurally tailorable, exhibiting rich structural polymorphs. In this perspective, the polymorphism in lead halide perovskites is described-a material system currently used for high-performance photovoltaics and optoelectronics. Strategies for stabilizing the metastable perovskite polymorphs based on crystal size reduction and surface functionalization are critically reviewed. Focus is on an unprecedented stabilization of metastable perovskite lattices in the 2D limit (e.g., with a thickness down to a few unit cells) due to the dominance of surface effects. This stabilization allows the incorporation of various A-cations that deemed oversized for 3D perovskites into the 2D perovskite lattices, which bring new insights on the relationships between the crystal structures and optoelectronic properties and lead to emergent ferroelectricity in halide perovskites. A comprehensive understanding is provided on how the A-cations influence the structural, optoelectronic, and ferroelectric properties, with an emphasis on the second order Jahn-Teller distortion caused by the oversized A-cations. Finally, future perspectives on new structure exploration and studies of fundamental photophysical properties using stabilized perovskite lattices are provided.
Collapse
Affiliation(s)
- Yongping Fu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|