1
|
Ahmed T, Tan X, Li BY, Cook E, Williams J, Tiano SM, Coffey B, Tenney SM, Hayes D, Caram JR. Heteroconfinement in Single CdTe Nanoplatelets. ACS NANO 2025; 19:3944-3952. [PMID: 39808109 DOI: 10.1021/acsnano.4c17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Dimension-engineered synthesis of atomically thin II-VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs. Combining ensemble and single-particle spectroscopic and microscopic tools, our work suggests that beyond 2 ML CdTe NPLs, higher ML structures initially appear as heteroconfined materials with colocalized multilayer structures. In particular, we observe strongly colocalized 3 and 4 ML emissions, accompanied by a broad trap emission. Accompanying transient absorption, single-particle optical, and atomic force microscopy analyses suggest islands of different MLs on the same NPL. To explain the nonstandard nucleation and growth of these heteroconfined structures, we simulated the growth conditions of NPLs and quantified how the monomer binding energy modifies the kinetics and permits single NPLs with multi-ML structures. Our findings suggest that the lower bond energy associated with CdTe relative to CdSe limits higher ML syntheses and explains the observed differences between CdTe and CdSe growth.
Collapse
Affiliation(s)
- Tasnim Ahmed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Xuanheng Tan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Barry Y Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Elijah Cook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Jillian Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Sophia M Tiano
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Belle Coffey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Stephanie M Tenney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
2
|
Sun Z, Guo Z, Tian S, Bi J, Li G, Sha Y, Wang J, Zhao L, Qian L. Interfacial and Defective Construction from Diverse Cu xS y Quantum Dots toward Broadband Carbon-Based Microwave Absorber. ACS NANO 2024; 18:27694-27706. [PMID: 39311683 DOI: 10.1021/acsnano.4c09900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this study, highly monodisperse copper sulfide (CuxSy) quantum dots (QDs) have been successfully obtained using a ligand-chemistry strategy, and then a variety of S-deficient CuxSy/nitrogen-doped carbon (NC) heterointerfaces are constructed by compositional fine-tuning (Cu9S5 → Cu1.96S → Cu). First-principles calculations show that the S-deficient domains of CuxSy QDs and N-doped domains of carbon synergistically enhance the electron transfer from CuxSy to NC. In addition, the finite element simulations demonstrate that the diverse CuxSy QDs exhibit their intrinsic size and dielectric confinement effects to precisely manipulate the electric field distortion and improve the relaxation polarization. Consequently, CuxSy@NC achieves excellent impedance matching and a strong loss mode dominated by dielectric polarization. Among them, CuxSy@NC-650 has a maximum effective absorption bandwidth of 7.7 GHz at 2.5 mm, while CuxSy@NC-700 features a minimum reflection loss of -66.7 dB at 13.7 GHz, respectively. Furthermore, the simulations of radar cross-sections have confirmed that the CuxSy@NC series is promising in the field of radar stealth.
Collapse
Affiliation(s)
- Zhihao Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Zihao Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Shaoyao Tian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Jingyu Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Guangshen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Ying Sha
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Jianshu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan 250100, China
| | - Lei Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| |
Collapse
|
3
|
Swanson J, El Jamal SE, Hartman T, Stewart OC, Glaser P, Biacchi AJ, Henry D, Liu A, Stoll SL. Solution Synthesis of NdTe 3 Magnetic Nanosheets. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7056-7068. [PMID: 39070667 PMCID: PMC11270740 DOI: 10.1021/acs.chemmater.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Neodymium tritelluride is a layered van der Waals material, with correlated electronic properties including high electronic mobility, charge density waves, and antiferromagnetism. We developed a solution synthesis method to form free-standing nanosheets of NdTe3, with nanosheet lateral dimensions of 200-400 nm. The morphology of the nanosheet was influenced by the neodymium precursor. When Nd[(N(SiMe3)2]3 was used as the metal source the nanosheet thickness average was 12 ± 2.5 nm, alternatively the combination of NdCl3 and Li(N(SiMe3)2) led to thicker nanosheets, approximately 19 ± 2.4 nm. We believe that the difference in thickness and changes in surface chemistry point to the role of chloride in accelerating nanocrystal growth for the synthesis with NdCl3 (and Li(N(SiMe3)2). Both types of nanosheets exhibit charge density wave (CDW) distortions as measured using electron diffraction and investigated using variable temperature Raman scattering. Interestingly, the magnetic studies suggest a distinct change in properties between 12 and 19 nm thickness in antiferromagnetic NdTe3.
Collapse
Affiliation(s)
- Joel Swanson
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Salah Eddin El Jamal
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Tyler Hartman
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Orlando C. Stewart
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Priscilla Glaser
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Adam J. Biacchi
- Nanoscale
Device Characterization Division, National
Institute of Standards and Technology (NIST), 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - DaVonne Henry
- Department
of Physics, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Amy Liu
- Department
of Physics, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| | - Sarah L. Stoll
- Department
of Chemistry, Georgetown University, 37th and O Sts. NW, Washington,
D.C. 20057, United States
| |
Collapse
|
4
|
Lesiak A, Wagnon B, Chateau D, Abécassis B, Parola S. Room temperature synthesis of CdSe/CdS triangular nanoemitters and their stabilization in colloidal state and sol-gel glass. RSC Adv 2023; 13:28407-28415. [PMID: 37771921 PMCID: PMC10523092 DOI: 10.1039/d3ra04992b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Heterostructured cadmium-based core-shell nanoparticles (NPs) are the subject of research because of not only fundamental scientific advances but also a range of technological applications. To increase the range of applications of nanoparticles, it is possible to immobilise them in sol-gel glass that can be easily manufactured and shaped, keeping the properties of the dispersed particles. This allows the creation of new bulk optical materials with tailored properties, opening up opportunities for various technological applications such as lighting or sensing. Herein we report the synthesis of core-shell CdSe/CdS triangular-shaped nanoparticles under an atmosphere of oxygen and at room temperature. A detailed characterisation of the obtained NPs was carried out. The interesting effect of the gelling agent (tetra-n-butylammonium fluoride) on the triangular nanoparticles in solution and the stability of the emission properties over time was investigated. Sol-gel glasses with entrapped triangular NPs were prepared, and their photoluminescence properties were compared with those obtained in colloidal solutions.
Collapse
Affiliation(s)
- Anna Lesiak
- Wrocław University of Science and Technology, Faculty of Chemistry Wrocław Poland
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Benoit Wagnon
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Denis Chateau
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Benjamin Abécassis
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| | - Stephane Parola
- École Normale Supérieure de Lyon, Chemistry Laboratory, CNRS, University Lyon 1, UMR 5182 Lyon France
| |
Collapse
|
5
|
Kang M, Chai K, Lee S, Oh JH, Bae JS, Payne GF. Revealing Redox Behavior of Molybdenum Disulfide and Its Application as Rechargeable Antioxidant Reservoir. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41362-41372. [PMID: 37610347 DOI: 10.1021/acsami.3c08659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Molybdenum disulfide (MoS2) is a representative two-dimensional transition metal dichalcogenide and has a unique electronic structure and associated physicochemical properties. The redox property of MoS2 has recently attracted significant attention from various fields, such as biomedical applications. Intriguingly, MoS2 functions as an antioxidant in certain applications and as a pro-oxidant in others. We use the mediated electrochemical probing method to understand the redox behavior of MoS2. This method reveals that MoS2 (i) has a reversible and fast redox activity at a mild potential (between -0.20 and +0.25 V vs Ag/AgCl), (ii) functions as an antioxidant for molecules that have different redox mechanisms (electron or hydrogen atom transfer), and (iii) is electrochemically or molecularly rechargeable. Finally, we show that MoS2 reduces oxidized molecules more efficiently than the potent natural antioxidant, curcumin. This study enhances our understanding of MoS2 and shows its potential as an advanced antioxidant reservoir.
Collapse
Affiliation(s)
- Mijeong Kang
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyunghwan Chai
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seunghun Lee
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Ju Hyun Oh
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Horani F, Sharma K, Abu-Hariri A, Lifshitz E. Colloidal Control of Branching in Metal Chalcogenide Semiconductor Nanostructures. J Phys Chem Lett 2023; 14:3794-3804. [PMID: 37052606 DOI: 10.1021/acs.jpclett.3c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal syntheses of metal chalcogenides yield nanostructures of various 1D, 2D, and 3D nanocrystals (NCs), including branched nanostructures (BNSs) of nanoflowers, tetrapods, octopods, nanourchins, and more. Efforts are continuously being made to understand the branching mechanism in colloidally prepared metal chalcogenides for tailor-making them into various morphologies for dedicated applications in solar cells, light-emitting diodes, stress sensor devices, and near-infrared photodetectors. The vital role of precursors and ligands has widely been recognized in directing nanocrystal morphology during the colloidal synthesis of metal chalcogenide nanostructures. Moreover, a few basic branching mechanisms in nanocrystals have also been derived from decades-long observations of branching in NCs. This Perspective (a) accounts for the mediation of branching in In2S3, PbS, MoSe2, WSe2, and WS2; (b) analyzes the underlying mechanisms; and (c) gives a future perspective toward better controlling the BNSs' morphologies and their impact on applications.
Collapse
Affiliation(s)
- Faris Horani
- Israel Schulich Faculty of Chemistry, the Solid-State Institute, the Russell Berrie Nanotechnology Institute, and the Helen Diller Quantum Information Center, Technion, Haifa 3200003, Israel
| | - Kusha Sharma
- Israel Schulich Faculty of Chemistry, the Solid-State Institute, the Russell Berrie Nanotechnology Institute, and the Helen Diller Quantum Information Center, Technion, Haifa 3200003, Israel
| | - Azhar Abu-Hariri
- Israel Schulich Faculty of Chemistry, the Solid-State Institute, the Russell Berrie Nanotechnology Institute, and the Helen Diller Quantum Information Center, Technion, Haifa 3200003, Israel
| | - Efrat Lifshitz
- Israel Schulich Faculty of Chemistry, the Solid-State Institute, the Russell Berrie Nanotechnology Institute, and the Helen Diller Quantum Information Center, Technion, Haifa 3200003, Israel
| |
Collapse
|
7
|
Xia H, Zan L, Yuan P, Qu G, Dong H, Wei Y, Yu Y, Wei Z, Yan W, Hu JS, Deng D, Zhang JN. Evolution of Stabilized 1T-MoS 2 by Atomic-Interface Engineering of 2H-MoS 2 /Fe-N x towards Enhanced Sodium Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202218282. [PMID: 36728690 DOI: 10.1002/anie.202218282] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
Metallic conductive 1T phase molybdenum sulfide (MoS2 ) has been identified as promising anode for sodium ion (Na+ ) batteries, but its metastable feature makes it difficult to obtain and its restacking during the charge/discharge processing result in part capacity reversibility. Herein, a synergetic effect of atomic-interface engineering is employed for constructing 2H-MoS2 layers assembled on single atomically dispersed Fe-N-C (SA Fe-N-C) anode material that boosts its reversible capacity. The work-function-driven-electron transfer occurs from SA Fe-N-C to 2H-MoS2 via the Fe-S bonds, which enhances the adsorption of Na+ by 2H-MoS2 , and lays the foundation for the sodiation process. A phase transfer from 2H to 1T/2H MoS2 with the ferromagnetic spin-polarization of SA Fe-N-C occurs during the sodiation/desodiation process, which significantly enhances the Na+ storage kinetics, and thus the 1T/2H MoS2 /SA Fe-N-C display a high electronic conductivity and a fast Na+ diffusion rate.
Collapse
Affiliation(s)
- Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lingxing Zan
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Key Laboratory of Chemical Reaction Engineering of Shaanxi Province, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Pengfei Yuan
- College of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Gan Qu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research Pudong, Shanghai, 201203, P. R. China
| | - Yifan Wei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yue Yu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zeyu Wei
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wenfu Yan
- State Key Lab of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jin-Song Hu
- Chinese Academy of Sciences Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jia-Nan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou, 450012, P. R. China
| |
Collapse
|
8
|
Li X, Zhou Y, Li L, Wang T, Wang B, Che R, Zhai Y, Zhang J, Li W. Metal selenide nanomaterials for biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113220. [PMID: 36889108 DOI: 10.1016/j.colsurfb.2023.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
Metal selenide nanomaterials have received enormous attention as they possess diverse compositions, microstructures, and properties. The combination of selenium with various metallic elements gives the metal selenide nanomaterials distinctive optoelectronic and magnetic properties, such as strong near-infrared absorption, excellent imaging properties, good stability, and long in vivo circulation. This makes metal selenide nanomaterials advantageous and promising for biomedical applications. This paper summarizes the research progress in the last five years in the controlled synthesis of metal selenide nanomaterials in different dimensions and with different compositions and structures. Then we discuss how surface modification and functionalization strategies are well-suited for biomedical fields, including tumor therapy, biosensing, and antibacterial biological applications. The future trends and issues of metal selenide nanomaterials in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Zhou
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China.
| | - Ting Wang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Rere Che
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiantao Zhang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China.
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
9
|
Failla M, García Flórez F, Salzmann BBV, Vanmaekelbergh D, Stoof HTC, Siebbeles LDA. Effects of Pump Photon Energy on Generation and Ultrafast Relaxation of Excitons and Charge Carriers in CdSe Nanoplatelets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:1899-1907. [PMID: 36761230 PMCID: PMC9900632 DOI: 10.1021/acs.jpcc.2c07292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
We studied the initial nature and relaxation of photoexcited electronic states in CdSe nanoplatelets (NPLs). Ultrafast transient optical absorption (TA) measurements were combined with the theoretical analysis of the formation and decay of excitons, biexcitons, free charge carriers, and trions. In the latter, photons and excitons were treated as bosons and free charge carriers as fermions. The initial quantum yields of heavy-hole (HH) excitons, light-hole (LH) excitons, and charge carriers vary strongly with photon energy, while thermal relaxation occurs always within 1 ps. After that, the population of LH excitons is negligible due to relaxation to HH excitons or decay into free electrons and holes. Up to the highest average number of about four absorbed photons per NPL in our experiments, we found no signatures of the presence of biexcitons or larger complexes. Biexcitons were only observed due to the interaction of a probe-generated exciton with an exciton produced previously by the pump pulse. For higher pump photon energies, the initial presence of more free charge carriers leads to formation of trions by probe photons. On increasing the number of absorbed pump photons in an NPL, the yield of excitons becomes higher as compared to free charge carriers, since electron-hole recombination becomes more likely. In addition to a TA absorption feature at energy below the HH exciton peak, we also observed a TA signal at the high-energy side of this peak, which we attribute to formation of LH-HH biexcitons or trions consisting of a charge and LH exciton.
Collapse
Affiliation(s)
- Michele Failla
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands
| | - Fransisco García Flórez
- Institute
for Theoretical Physics and Center for Extreme Matter and Emergent
Phenomena, Utrecht University, Princetonplein 5, 3584 CCUtrecht, The Netherlands
| | - Bastiaan B. V. Salzmann
- Condensed
Matter and Interfaces, Debye Institute, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Daniel Vanmaekelbergh
- Condensed
Matter and Interfaces, Debye Institute, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Henk T. C. Stoof
- Institute
for Theoretical Physics and Center for Extreme Matter and Emergent
Phenomena, Utrecht University, Princetonplein 5, 3584 CCUtrecht, The Netherlands
| | - Laurens D. A. Siebbeles
- Chemical
Engineering Department, Delft University
of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands
| |
Collapse
|
10
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
11
|
Review on Metal Chalcogenides and Metal Chalcogenide-Based Nanocomposites in Photocatalytic Applications. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|