1
|
Prusty BM, Srimayee S, Karn R, Haloi N, Singh SK, Winterhalter M, Manna D. Supramolecular Nanochannels: Suprasome-Mediated Delivery of Ionophore to Regulate Transmembrane Zn 2+ Ion Transport. Chemistry 2025:e202501013. [PMID: 40241253 DOI: 10.1002/chem.202501013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
The development of synthetic ion channels and stimuli-responsive suprasomes represents two crucial yet largely disconnected areas of supramolecular chemistry. Herein, we demonstrated that suprasomes can effectively deliver hydrophobic synthetic ion transporters to lipid membranes, regulating physiologically significant transition metal ions and subsequently modulating activity within lipid-bound compartments. We showed that a potent bis(vinylbenzimidazole)phenol derivative self-assembles within the lipid bilayer to form a supramolecular nanochannel, which facilitates selective and efficient transport of Zn2+ ions from the external aqueous solution across the lipid bilayer and into the internal solution of large unilamellar vesicles via an electrogenic pathway. The hydrophobic ion transporter could also be delivered to lipid bilayers due to its inherent ability to form suprasomal assembly with β-cyclodextrin (β-CD) through dynamic host-guest interactions. The Zn2⁺ ions serve as stimuli to disassemble the suprasomes and release the ion transporter, which further penetrates the bilayers of lipid vesicles and regulates transmembrane Zn2+ ion transport. The application of this strategy of stimuli-mediated delivery of synthetic ion transporters to regulate transmembrane Zn2+ ion transport showed antibacterial activities against Gram-positive, Gram-negative, and drug-resistant bacterial cells.
Collapse
Affiliation(s)
- Biswa Mohan Prusty
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Soumya Srimayee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rama Karn
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Nandan Haloi
- Department of Biochemistry and Biophysics, Science for Life, Laboratory, Stockholm University, Tomtebodavägen 23, Solna, Sweden
| | - Sushant Kumar Singh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Mathias Winterhalter
- Institute for Nanostructure and Solid-State Physics, University of Hamburg, Luruper Chaussee 149, Hamburg, Germany
- School of Science, Constructor University, Campus Ring 1, Bremen, Germany
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Gou F, Wang Q, Yang Z, Chang W, Shen J, Zeng H. Artificial Lithium Channels Built from Polymers with Intrinsic Microporosity. Angew Chem Int Ed Engl 2025; 64:e202418304. [PMID: 39352859 DOI: 10.1002/anie.202418304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In sharp contrast to numerous artificial potassium channels developed over the past decade, the study of artificial lithium-transporting channels has remained limited. We demonstrate here the use of an interesting class of polymers with intrinsic microporosity (PIM) for constructing artificial lithium channels. These PIM-derived lithium channels show exceptionally efficient (γLi +>40 pS) and highly selective transport of Li+ ions, with selectivity factors of>10 against both Na+ and K+. By simply adjusting the initial reaction temperature, we can tune the transport property in a way that PIMs synthesized at initial reaction temperatures of 60 °C and 80 °C exhibit improved transport efficiency and selectivity, respectively, in the dioleoyl phosphatidylcholine membrane.
Collapse
Affiliation(s)
- Fei Gou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuting Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zihong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenju Chang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
3
|
Yan T, Liu J. Transmembrane Ion Channels: From Natural to Artificial Systems. Angew Chem Int Ed Engl 2025; 64:e202416200. [PMID: 39545394 DOI: 10.1002/anie.202416200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/17/2024]
Abstract
Natural channel proteins allow the selective permeation of ions, water or other nutritious entities across bilayer membranes, facilitating various essential physiological functions in living systems. Inspired by nature, chemists endeavor to simulate the structural features and transport behaviors of channel proteins through biomimetic strategies. In this review, we start from introducing the inherent traits of channel proteins such as their crystal structures, functions and mechanisms. Subsequently, different kind of synthetic ion channels including their design principles, dynamic regulations and therapeutic applications were carefully reviewed. Finally, the potential challenges and opportunities in this research field were also carefully discussed. It is anticipated that this review could provide some inspiring ideas and future directions towards the construction of novel bionic ion channels with higher-level structures, properties, functions and practical applications.
Collapse
Affiliation(s)
- Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
4
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
5
|
Pamungkas KKP, Fureraj I, Assies L, Sakai N, Mercier V, Chen XX, Vauthey E, Matile S. Core-Alkynylated Fluorescent Flippers: Altered Ultrafast Photophysics to Track Thick Membranes. Angew Chem Int Ed Engl 2024; 63:e202406204. [PMID: 38758302 DOI: 10.1002/anie.202406204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Fluorescent flippers have been introduced as small-molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core-alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited-state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core-alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor-like torsional disorder and thus weak, blue-shifted fluorescence. Flipper-like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red-shifted, sharpened excitation maxima, high intensity and long lifetime.
Collapse
Affiliation(s)
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | - Xiao-Xiao Chen
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Paul R, Dutta D, Mukhopadhyay TK, Müller D, Lala B, Datta A, Schwalbe H, Dash J. A non-B DNA binding peptidomimetic channel alters cellular functions. Nat Commun 2024; 15:5275. [PMID: 38902227 PMCID: PMC11190219 DOI: 10.1038/s41467-024-49534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debasish Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Diana Müller
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe, University Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Binayak Lala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe, University Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
7
|
Vagenas D, Pispas S. Four-Component Statistical Copolymers by RAFT Polymerization. Polymers (Basel) 2024; 16:1321. [PMID: 38794514 PMCID: PMC11125712 DOI: 10.3390/polym16101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA475), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzyl methacrylate (BzMA). Monomer choice was based on factors such as the chemical nature of pendant functional groups, the polyelectrolyte/polyampholyte and amphiphilic character and the overall hydrophobic-hydrophilic balance (HLB) of the obtained quaterpolymers. Their synthesis was achieved via a one-pot reversible addition fragmentation chain transfer (RAFT) polymerization in two distinct compositions and molecular architectures, linear and hyperbranched, respectively, in order to explore the effects of macromolecular topology. The resulting statistical quaterpolymers were characterized via 1H-NMR and ATR-FTIR spectroscopies. Their behavior in aqueous solutions was studied by dynamic (DLS) and electrophoretic light scattering (ELS) and fluorescence spectroscopy (FS), producing vital information concerning their self-assembly and the structure of the formed aggregates. The physicochemical studies were extended by tuning parameters such as the solution pH and ionic strength. Finally, the quaterpolymer behavior in FBS/PBS solutions was investigated to test their colloid stability and biocompatibility in an in vivo-mimicking, biological fluid environment.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
8
|
Muthwill MS, Bina M, Paracini N, Coats JP, Merget S, Yorulmaz Avsar S, Messmer D, Tiefenbacher K, Palivan CG. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422470 DOI: 10.1021/acsami.3c18687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| | - Maryame Bina
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Nicolò Paracini
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - John Peter Coats
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Severin Merget
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Daniel Messmer
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Kariya M, Omoto K, Nomura K, Yonezawa K, Kamikubo H, Nishino T, Inoie T, Rapenne G, Yasuhara K. Lipid cubic phase with an organic-inorganic hybrid structure formed by organoalkoxysilane lipid. Chem Commun (Camb) 2024; 60:2168-2171. [PMID: 38205510 DOI: 10.1039/d3cc05167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A lipid cubic phase encompassing a cross-linked siloxane structure was formed by the self-assembly of a synthetic organoalkoxysilane lipid in water. The spontaneous sol-gel reaction of the alkoxysilane moiety on the lipid head group produced an organic-inorganic hybrid material with a double gyroid Ia3d cubic structure.
Collapse
Affiliation(s)
- Miki Kariya
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Kenichiro Omoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Kento Yonezawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Tomomi Inoie
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- CEMES-CNRS, Université de Toulouse, CNRS, 29 Rue Marvig, F-31055 Toulouse Cedex 4, France
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| |
Collapse
|
10
|
Sato K. Beyond Natural Channel Proteins: Recent Advances in Fluorinated Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2809-2814. [PMID: 38307088 DOI: 10.1021/acs.langmuir.3c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Inspired by the structures and functions of natural channel proteins that selectively permeate ions and molecules across biological membranes, synthetic molecules capable of self-assembling into supramolecular nanotubes within the hydrophobic layer of the membranes have been designed and their material permeation properties have been studied. More recently, synthetic chemists have ventured to incorporate fluorine atoms, elements rarely found in natural proteins, into the structure of synthetic channels and discovered anomalous transmembrane material permeation properties. In this Perspective, the author provides a brief overview of recent advances in the development of fluorinated nanochannels and possible directions for the future.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
11
|
Chen XX, Gomila RM, García-Arcos JM, Vonesch M, Gonzalez-Sanchis N, Roux A, Frontera A, Sakai N, Matile S. Fluorogenic In Situ Thioacetalization: Expanding the Chemical Space of Fluorescent Probes, Including Unorthodox, Bifurcated, and Mechanosensitive Chalcogen Bonds. JACS AU 2023; 3:2557-2565. [PMID: 37772186 PMCID: PMC10523495 DOI: 10.1021/jacsau.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
Progress with fluorescent flippers, small-molecule probes to image membrane tension in living systems, has been limited by the effort needed to synthesize the twisted push-pull mechanophore. Here, we move to a higher oxidation level to introduce a new design paradigm that allows the screening of flipper probes rapidly, at best in situ. Late-stage clicking of thioacetals and acetals allows simultaneous attachment of targeting units and interfacers and exploration of the critical chalcogen-bonding donor at the same time. Initial studies focus on plasma membrane targeting and develop the chemical space of acetals and thioacetals, from acyclic amino acids to cyclic 1,3-heterocycles covering dioxanes as well as dithiolanes, dithianes, and dithiepanes, derived also from classics in biology like cysteine, lipoic acid, asparagusic acid, DTT, and epidithiodiketopiperazines. From the functional point of view, the sensitivity of membrane tension imaging in living cells could be doubled, with lifetime differences in FLIM images increasing from 0.55 to 1.11 ns. From a theoretical point of view, the complexity of mechanically coupled chalcogen bonding is explored, revealing, among others, intriguing bifurcated chalcogen bonds.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rosa M. Gomila
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | | | - Maxime Vonesch
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Aurelien Roux
- Department
of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Naomi Sakai
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
12
|
Adachi J, Oda H, Fukushima T, Lestari B, Kimura H, Sugai H, Shiraki K, Hamaguchi R, Sato K, Kinbara K. Dense and Acidic Organelle-Targeted Visualization in Living Cells: Application of Viscosity-Responsive Fluorescence Utilizing Restricted Access to Minimum Energy Conical Intersection. Anal Chem 2023; 95:5196-5204. [PMID: 36930819 PMCID: PMC10061370 DOI: 10.1021/acs.analchem.2c04133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Cell-imaging methods with functional fluorescent probes are an indispensable technique to evaluate physical parameters in cellular microenvironments. In particular, molecular rotors, which take advantage of the twisted intramolecular charge transfer (TICT) process, have helped evaluate microviscosity. However, the involvement of charge-separated species in the fluorescence process potentially limits the quantitative evaluation of viscosity. Herein, we developed viscosity-responsive fluorescent probes for cell imaging that are not dependent on the TICT process. We synthesized AnP2-H and AnP2-OEG, both of which contain 9,10-di(piperazinyl)anthracene, based on 9,10-bis(N,N-dialkylamino)anthracene that adopts a nonflat geometry at minimum energy conical intersection. AnP2-H and AnP2-OEG exhibited enhanced fluorescence as the viscosity increased, with sensitivities comparable to those of conventional molecular rotors. In living cell systems, AnP2-OEG showed low cytotoxicity and, reflecting its viscosity-responsive property, allowed specific visualization of dense and acidic organelles such as lysosomes, secretory granules, and melanosomes under washout-free conditions. These results provide a new direction for developing functional fluorescent probes targeting dense organelles.
Collapse
Affiliation(s)
- Junya Adachi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Beni Lestari
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroka Sugai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Rei Hamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
13
|
Kumari H, Negin S, Eisenhart A, Patel MB, Beck TL, Heinrich F, Spikes HJ, Gokel GW. Assessment of a host-guest interaction in a bilayer membrane model. RSC Adv 2022; 12:32046-32055. [PMID: 36415550 PMCID: PMC9648047 DOI: 10.1039/d2ra03851j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 10/28/2023] Open
Abstract
Supramolecular interactions are well recognized and many of them have been extensively studied in chemistry. The formation of supramolecular complexes that rely on weak force interactions are less well studied in bilayer membranes. Herein, a supported bilayer membrane is used to probe the penetration of a complex between tetracycline and a macrocyclic polyether. In a number of bacterial systems, the presence of the macrocycle has been found to significantly enhance the potency of the antimicrobial in vitro. The crown·tetracycline complex has been characterized in solution, neutron reflectometry has probed complex penetration, and the phenomena have been modeled by computational methods.
Collapse
Affiliation(s)
- Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati Ohio USA 45267-0514
| | - Saeedeh Negin
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| | | | - Mohit B Patel
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| | - Thomas L Beck
- Department of Chemistry, University of Cincinnati OH 45267 USA
- National Center for Computational Sciences, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University Pittsburgh PA 15213 USA
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Helena J Spikes
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| | - George W Gokel
- Chemistry & Biochemistry, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
- Biology, University of Missouri-St. Louis 1 University Blvd. St. Louis MO 63121 USA
| |
Collapse
|
14
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Yospanya W, Sato K, Kinbara K. Multiblock Amphiphilic Triptycene toward Bioinspired Molecular Rotor in Membrane. CHEM LETT 2022. [DOI: 10.1246/cl.220360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wijak Yospanya
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
16
|
Sato K, Sasaki R, Matsuda R, Nakagawa M, Ekimoto T, Yamane T, Ikeguchi M, Tabata KV, Noji H, Kinbara K. Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane. J Am Chem Soc 2022; 144:11802-11809. [PMID: 35727684 DOI: 10.1021/jacs.2c04118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inspired by mechanosensitive potassium channels found in nature, we developed a fluorinated amphiphilic cyclophane composed of fluorinated rigid aromatic units connected via flexible hydrophilic octa(ethylene glycol) chains. Microscopic and emission spectroscopic studies revealed that the cyclophane could be incorporated into the hydrophobic layer of the lipid bilayer membranes and self-assembled to form a supramolecular transmembrane ion channel. Current recording measurements using cyclophane-containing planer lipid bilayer membranes successfully demonstrated an efficient transmembrane ion transport. We also demonstrated that the ion transport property was sensitive to the mechanical forces applied to the membranes. In addition, ion transport assays using pH-sensitive fluorescence dye revealed that the supramolecular channel possesses potassium ion selectivity. We also performed all-atom hybrid quantum-mechanical/molecular mechanical simulations to assess the channel structures at atomic resolution and the mechanism of selective potassium ion transport. This research demonstrated the first example of a synthetic mechanosensitive potassium channel, which would open a new door to sensing and manipulating biologically important processes and purification of key materials in industries.
Collapse
Affiliation(s)
- Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryoto Matsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mayuko Nakagawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
17
|
Lee G, Kageyama Y, Takeda S. Site-Selective Spin-Probe with a Photocleavable Macrocyclic Linker for Measuring the Dynamics of Water Surrounding a Liposomal Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyeorye Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshiyuki Kageyama
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sadamu Takeda
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
18
|
Host-guest interaction induced ion channels for accelerated OH− transport in anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|