1
|
Ma L, Kuang Z, Zhang H, Wan Y, Guo Y, Xia A, Li Y. Modulating the Charge Transfer Coupling in Boron-Dipyrromethene Homodimers by π-Bridge Units. J Phys Chem B 2025; 129:3428-3435. [PMID: 40106700 DOI: 10.1021/acs.jpcb.5c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
To mimic the excitation energy conversion mechanisms observed in natural light-harvesting systems, we have extensively investigated photoinduced symmetry-breaking charge separations (SBCSs) in various multichromophoric model systems have been extensively investigated. However, designing multichromophoric model systems capable of simultaneously achieving ultrafast and complete SBCS remains a significant challenge. In this study, we employed benzene, thiophene, and furan as π-bridges to develop a series of boron dipyrromethene (BODIPY) homodimers. Spectral analysis, together with an estimation of the π-bridge-dependent charge transfer (CT) coupling using the fragment charge difference method, reveals that π-bridge units with different electron-donating abilities can effectively modulate the CT coupling between chromophores. Notably, the furan-based π-bridge, exhibiting the most pronounced electron-donating character, facilitates symmetry-breaking charge transfer (SBCT), i.e., excimer formation with a time constant of about 12 ps in weak polar toluene. Furthermore, a dramatic increase in the SBCS rate constant was observed in highly polar acetonitrile, improving from 60.4 ps for the benzene-bridged homodimer to 2.9 ps for the furan-bridged counterpart. These findings underscore the potential of π-bridge units in tuning the photophysical properties of covalent molecular aggregates by optimizing such systems for specific applications such as organic photovoltaics and photocatalysis.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Hao Zhang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuanyuan Guo
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
2
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
3
|
Tsuru S, Sharma B, Hättig C, Marx D. Nuclear Quantum Effects Have a Significant Impact on UV/Vis Absorption Spectra of Chromophores in Water. Angew Chem Int Ed Engl 2025; 64:e202416058. [PMID: 39474981 DOI: 10.1002/anie.202416058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
Despite the broadly acknowledged importance of solvation effects on measured UV/Vis spectra in the context of solvatochromism or chemical reactions in solution, it is still an open challenge to calculate UV/Vis spectra with predictive accuracy. This is particularly true when it comes to the impact of nuclear quantum effects on these experimental observables. In the present work, we calculate the UV/Vis absorption spectrum of indole in aqueous solution with a combination of a correlated wavefunction method for computing electronic excitation energies and enhanced path integral simulations for rigorous sampling of nuclear configurations including the quantum effects in solution. After validating our approach based on gas-phase benchmarking, we demonstrate that the lineshape of the spectrum measured in aqueous solution is quantitatively recovered, without the application of any shifting, scaling, or broadening, only after including nuclear quantum effects in addition to thermal fluctuations and solvation at ambient conditions. Our findings demonstrate that nuclear quantum effects are "visible" in UV/Vis spectra of chromophores measured in solution even at room temperature and, therefore, that they must be considered computationally to achieve predictive accuracy.
Collapse
Affiliation(s)
- Shota Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
- RIKEN Center for Computational Science, Minatojima-minami 7-1-26, 650-0047, Kobe, Japan
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
4
|
Li Y, Ma L, Shao JY, Kuang Z, Zhang J, Wan Y, Zhong YW, Zhao H. Ultrafast Charge Separation Driven by Solvation-Coupled Intramolecular Torsion. J Phys Chem A 2024; 128:9201-9207. [PMID: 39387815 DOI: 10.1021/acs.jpca.4c05149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Photoinduced intramolecular charge separation in a pyrene- and triarylamine-based donor-acceptor dyad was studied by polarization-dependent femtosecond time-resolved transient absorption (TA) spectroscopy in polar solvents. Photoexcitation forms an excited state with charge transfer (CT) character due to the intrinsic electronic coupling between the triarylamine and pyrene groups, resulting in ultrafast charge separation (CS) in polar solvents. TA measurements reveal a correlation between the rate of CS and solvation dynamics, which implies that solvation is involved in the CS reaction. In addition, polarization-dependent TA spectroscopy was devoted to tracking the ultrafast anisotropy evolution of the cationic absorption band, which is attributed to intramolecular torsional motion and is proposed to be coupled to diffusive orientational solvent modes. The results therefore reveal that the evolution of the CT state in the condensed phase is driven by solvation-coupled excited-state structural relaxation. In other words, intramolecular torsional motion is directly confirmed to be involved in the reaction coordinate of the CS reaction in a strongly coupled donor-acceptor dyad.
Collapse
Affiliation(s)
- Yang Li
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Lin Ma
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhuoran Kuang
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Jiawen Zhang
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hongmei Zhao
- School of Sciences, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
5
|
Gonzalez-Carrero S, Kosco J, Fei T, McCulloch I, Durrant JR. Impact of water solvation on the charge carrier dynamics of organic heterojunction photocatalyst nanoparticle dispersions. Chem Sci 2024:d4sc04030a. [PMID: 39479153 PMCID: PMC11514576 DOI: 10.1039/d4sc04030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Organic heterojunction nanoparticles (NP) have recently gained significant interest as photocatalysts for visible light-driven hydrogen production. Whilst promising photocatalytic efficiencies have been reported for aqueous NP dispersions, the underlying dynamics of photogenerated charges in such organic heterojunction photocatalysts and how these might differ from more widely studied dry heterojunction films remain relatively unexplored. In this study, we combine transient optical spectroscopies over twelve orders of magnitude in time, using pulsed and continuous light illumination, to elucidate the differences in the charge carrier dynamics of heterojunction NP dispersions, dried NP films, and bulk heterojunction films prepared by spin coating. The ultrafast fast (ps to ns) transient absorption results show efficient charge generation and indistinguishable nanosecond charge recombination decay kinetics of separated charges in all three samples. In contrast, on the slower μs to ms time range, the decay kinetics of heterojunction NP dispersion exhibited up to 15-fold larger amplitude and more than one order of magnitude slower decay of the photogenerated charges than those in films. The analysis of the nanomorphology, NP surfactant, polymer residual metal content and local polar environment suggest that the longer lifetime differences (in ms) in the charge recombination in NP dispersion are mostly associated with a charge carrier stabilisation on a shallow density of states on the NP surface of ∼350 meV by interaction with local water environment, resulting in suppressed charge recombination. The lengthening of NP dispersion charge carrier lifetime is discussed regarding the energetic loss for function and their implications in photocatalysis.
Collapse
Affiliation(s)
- Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- Institute of Molecular Science, University of Valencia 46980 Paterna Valencia Spain
| | - Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
| | - Teng Fei
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- Department of Electrical and Computer Engineering, Andlinger Center for Energy and the Environment, Princeton University Princeton NJ 08544 USA
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- SPECIFIC IKC, College of Engineering, Swansea University Bay Campus, Fabian Way, Wales Swansea SA1 8EN UK
| |
Collapse
|
6
|
Wu X, Xie S, Vangestel D, Zhao H, Sels B. Green Solvent γ-Valerolactone (GVL) Facilitates Photocatalytic C-H Bond Activation. Angew Chem Int Ed Engl 2024; 63:e202409826. [PMID: 39023384 DOI: 10.1002/anie.202409826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Solvents can significantly influence chemical reactions in condensed phases. Their critical properties are increasingly recognized in various research domains such as organic synthesis and biomass valorization. However, in semiconductor photocatalysis, solvents are primarily viewed as mediums for dissolving and diffusing substances, with their potential beneficial effects on photocatalytic conversions often overlooked. Additionally, common photocatalysis solvents like acetonitrile (ACN) pose serious safety and environmental concerns. In this study, we demonstrate that novel and safe green solvents, such as γ-valerolactone (GVL), can significantly enhance the performance of semiconductor photocatalysis for C-H bond activation. Non-specific solvent-solute interactions are the primary contributors to increased photocatalytic activity in the self-coupling of benzylic compounds. Specifically, GVL's large dielectric constant and high refractive index lower the energy barrier for the rate-determining C-H bond activation step, facilitating a faster coupling reaction. The versatility of GVL is further demonstrated in reactions with multiple reagents and in various oxidation and reduction photocatalytic systems beyond classic C-H bond activation. This work not only pioneers the use of green solvents but also provides comprehensive insights for proper solvent selection in semiconductor photocatalysis.
Collapse
Affiliation(s)
- Xuejiao Wu
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Dario Vangestel
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - He Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Bert Sels
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| |
Collapse
|
7
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
8
|
Polonius S, Lehrner D, González L, Mai S. Resolving Photoinduced Femtosecond Three-Dimensional Solute-Solvent Dynamics through Surface Hopping Simulations. J Chem Theory Comput 2024; 20:4738-4750. [PMID: 38768386 PMCID: PMC11171268 DOI: 10.1021/acs.jctc.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Photoinduced dynamics in solution is governed by mutual solute-solvent interactions, which give rise to phenomena like solvatochromism, the Stokes shift, dual fluorescence, or charge transfer. Understanding these phenomena requires simulating the solute's photoinduced dynamics and simultaneously resolving the three-dimensional solvent distribution dynamics. If using trajectory surface hopping (TSH) to this aim, thousands of trajectories are required to adequately sample the time-dependent three-dimensional solvent distribution functions, and thus resolve the solvent dynamics with sub-Ångstrom and femtosecond accuracy and sufficiently low noise levels. Unfortunately, simulating thousands of trajectories with TSH in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) can be prohibitively expensive when employing ab initio electronic structure methods. To tackle this challenge, we recently introduced a computationally efficient approach that combines efficient linear vibronic coupling models with molecular mechanics (LVC/MM) via electrostatic embedding [Polonius et al., JCTC 2023, 19, 7171-7186]. This method provides solvent-embedded, nonadiabatically coupled potential energy surfaces while scaling similarly to MM force fields. Here, we employ TSH with LVC/MM to unravel the photoinduced dynamics of two small thiocarbonyl compounds solvated in water. We describe how to estimate the number of trajectories required to produce nearly noise-free three-dimensional solvent distribution functions and present an analysis based on approximately 10,000 trajectories propagated for 3 ps. In the electronic ground state, both molecules exhibit in-plane hydrogen bonds to the sulfur atom. Shortly after excitation, these bonds are broken and reform perpendicular to the molecular plane on timescales that differ by an order of magnitude due to steric effects. We also show that the solvent relaxation dynamics is coupled to the electronic dynamics, including intersystem crossing. These findings are relevant to advance the understanding of the coupled solute-solvent dynamics of solvated photoexcited molecules, e.g., biologically relevant thio-nucleobases.
Collapse
Affiliation(s)
- Severin Polonius
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - David Lehrner
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
9
|
Verma P, Budkina DS, Vauthey E. Photoinduced Electron Transfer between Dipolar Reactants: Solvent and Excitation Wavelength Effects. J Phys Chem B 2024; 128:1231-1240. [PMID: 38265415 DOI: 10.1021/acs.jpcb.3c07922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Electron transfer (ET) quenching in nonpolar media is not as well understood as in polar environments. Here, we investigate the effect of dipole-dipole interactions between the reactants using ultrafast broadband electronic spectroscopy combined with molecular dynamics simulations. We find that the quenching of the S1 state of two polar dyes, coumarin 152a and Nile red, by the polar N,N-dimethylaniline (DMA) in cyclohexane is faster by a factor up to 3 when exciting on the red edge rather than at the maximum of their S1 ← S0 absorption band. This originates from the inhomogeneous broadening of the band due to a distribution of the number of quencher molecules around the dyes. As a consequence, red-edge excitation photoselects dyes in a DMA-rich environment. Such broadening is not present in acetonitrile, and no excitation wavelength dependence of the ET dynamics is observed. The quenching of both dyes is markedly faster in nonpolar than polar solvents, independently of the excitation wavelength. According to molecular dynamics simulations, this is due to the preferential solvation of the dyes by DMA in cyclohexane. The opposite preferential solvation is predicted in acetonitrile. Consequently, close contact between the reactants in acetonitrile requires partial desolvation. By contrast, the recombination of the quenching product is slower in nonpolar than in polar solvents and exhibits much smaller dependence, if any, on the excitation wavelength.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Darya S Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Rana B, Hohenstein EG, Martínez TJ. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J Phys Chem A 2024; 128:139-151. [PMID: 38110364 DOI: 10.1021/acs.jpca.3c06607] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decade, there has been a growth of interest in polaritonic chemistry, where the formation of hybrid light-matter states (polaritons) can alter the course of photochemical reactions. These hybrid states are created by strong coupling between molecules and photons in resonant optical cavities and can even occur in the absence of light when the molecule is strongly coupled with the electromagnetic fluctuations of the vacuum field. We present a first-principles model to simulate nonadiabatic dynamics of such polaritonic states inside optical cavities by leveraging graphical processing units (GPUs). Our first implementation of this model is specialized for a single molecule coupled to a single-photon mode confined inside the optical cavity but with any number of excited states computed using complete active space configuration interaction (CASCI) and a Jaynes-Cummings-type Hamiltonian. Using this model, we have simulated the excited-state dynamics of a single salicylideneaniline (SA) molecule strongly coupled to a cavity photon with the ab initio multiple spawning (AIMS) method. We demonstrate how the branching ratios of the photodeactivation pathways for this molecule can be manipulated by coupling to the cavity. We also show how one can stop the photoreaction from happening inside of an optical cavity. Finally, we also investigate cavity-based control of the ordering of two excited states (one optically bright and the other optically dark) inside a cavity for a set of molecules, where the dark and bright states are close in energy.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Edward G Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
11
|
Morawski OW, Gawryś P, Sobolewski AL. Harnessing Proton-Coupled Electron Transfer for Hydrogenation of Aza-Arenes: Photochemistry of Quinoxaline Derivatives in Methanol. J Phys Chem A 2023; 127:8871-8881. [PMID: 37842877 PMCID: PMC10614181 DOI: 10.1021/acs.jpca.3c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Three quinoxaline derivatives are investigated both experimentally and theoretically to assess their ability for the methanol oxidation and harvesting of hydrogen. In inert solvents, the nonplanar compounds exhibit very weak fluorescence from the lowest excited singlet state, whereas the planar and rigid chromophore emits non-Kasha fluorescence from the S2(ππ*) state despite the proximity of the S1(nπ*) state. In methanol, hydrogen-bonded complexes with solvent molecules are formed, and in all chromophores, the lowest singlet state is populated after excitation of the S2(ππ*) state. The switch from non-Kasha emission of the planar compound in inert solvents to regular emission in methanol is related to reduced symmetry of the hydrogen-bonded complex with methanol which results in effective mixing of ππ* and nπ* states and fast internal conversion to the lowest excited singlet state. The S1(nπ*) state of the hydrogen-bonded complex has charge-transfer character, and for all compounds in methanol, hydrogen transfer to the chromophore is observed. The chromophores retain the transferred hydrogen atoms, serving both as photocatalysts and as hydrogen storage materials. Undesired dark side reactions that occur are also discussed.
Collapse
Affiliation(s)
- Olaf W. Morawski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Paweł Gawryś
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Andrzej L. Sobolewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
12
|
Ye F, Chen W, Deng Z, Chen SL, Dong Z, Dang L, Li MD. Ultrafast excited-state energy dissipation pathway of diethylamino hydroxybenzoyl hexyl benzoate (DHHB) via the nanoparticles. Photochem Photobiol Sci 2023; 22:2133-2142. [PMID: 37195390 DOI: 10.1007/s43630-023-00435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
The organic UVA filter is popularized in sunscreen cosmetics due to the advantages of excellent light stability and high molar extinction coefficient. However, the poor water solubility of organic UV filters has been a common problem. Given that nanoparticles (NPs) can significantly improve the water solubility of organic chemicals. Meanwhile, the excited-state relaxation pathways of NPs might differ from their solution. Here, the NPs of diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a popular organic UVA filter, were prepared by an advanced ultrasonic micro-flow reactor. The surfactant (sodium dodecyl sulfate) was selected as an effective stabilizer to prevent the self-aggregation of the NPs for DHHB. Femtosecond transient ultrafast spectroscopy (fs-TA) and theoretical calculations were utilized to trace and explain the excited-state evolution of DHHB in NPs suspension and its solution. The results reveal that the surfactant-stabilized NPs of DHHB reserve a similarly good performance of ultrafast excited-state relaxation. The stability characterization experiments demonstrate that the strategy of surfactant-stabilized NPs for sunscreen chemicals can maintain its stability and enhance the water solubility of DHHB compared with that of the solution phase. Therefore, the surfactant-stabilized NPs of organic UV filters are an effective method to improve water solubility and keep the stability from aggregation and photoexcitation.
Collapse
Affiliation(s)
- Fanwei Ye
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No 243, University Road, Shantou, 515063, China
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No 243, University Road, Shantou, 515063, China
| | - Ziqi Deng
- Department of Chemistry, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shun-Li Chen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No 243, University Road, Shantou, 515063, China
| | - Zhengya Dong
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Li Dang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No 243, University Road, Shantou, 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No 243, University Road, Shantou, 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| |
Collapse
|
13
|
Yao Y, Ding P, Yan C, Tao Y, Peng B, Liu W, Wang J, Cohen Stuart MA, Guo Z. Fluorescent Probes Based on AIEgen-Mediated Polyelectrolyte Assemblies for Manipulating Intramolecular Motion and Magnetic Relaxivity. Angew Chem Int Ed Engl 2023; 62:e202218983. [PMID: 36700414 DOI: 10.1002/anie.202218983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique "soft" inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.
Collapse
Affiliation(s)
- Yongkang Yao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yining Tao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Peng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Weimin Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Martien A Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
15
|
Abstract
Knowledge of the electronic structure of an aqueous solution is a prerequisite to understanding its chemical and biological reactivity and its response to light. One of the most direct ways of determining electronic structure is to use photoelectron spectroscopy to measure electron binding energies. Initially, photoelectron spectroscopy was restricted to the gas or solid phases due to the requirement for high vacuum to minimize inelastic scattering of the emitted electrons. The introduction of liquid-jets and their combination with intense X-ray sources at synchrotrons in the late 1990s expanded the scope of photoelectron spectroscopy to include liquids. Liquid-jet photoelectron spectroscopy is now an active research field involving a growing number of research groups. A limitation of X-ray photoelectron spectroscopy of aqueous solutions is the requirement to use solutes with reasonably high concentrations in order to obtain photoelectron spectra with adequate signal-to-noise after subtracting the spectrum of water. This has excluded most studies of organic molecules, which tend to be only weakly soluble. A solution to this problem is to use resonance-enhanced photoelectron spectroscopy with ultraviolet (UV) light pulses (hν ≲ 6 eV). However, the development of UV liquid-jet photoelectron spectroscopy has been hampered by a lack of quantitative understanding of inelastic scattering of low kinetic energy electrons (≲5 eV) and the impact on spectral lineshapes and positions.In this Account, we describe the key steps involved in the measurement of UV photoelectron spectra of aqueous solutions: photoionization/detachment, electron transport of low kinetic energy electrons through the conduction band, transmission through the water-vacuum interface, and transport through the spectrometer. We also explain the steps we take to record accurate UV photoelectron spectra of liquids with excellent signal-to-noise. We then describe how we have combined Monte Carlo simulations of electron scattering and spectral inversion with molecular dynamics simulations of depth profiles of organic solutes in aqueous solution to develop an efficient and widely applicable method for retrieving true UV photoelectron spectra of aqueous solutions. The huge potential of our experimental and spectral retrieval methods is illustrated using three examples. The first is a measurement of the vertical detachment energy of the green fluorescent protein chromophore, a sparingly soluble organic anion whose electronic structure underpins its fluorescence and photooxidation properties. The second is a measurement of the vertical ionization energy of liquid water, which has been the subject of discussion since the first X-ray photoelectron spectroscopy measurement in 1997. The third is a UV photoelectron spectroscopy study of the vertical ionization energy of aqueous phenol which demonstrates the possibility of retrieving true photoelectron spectra from measurements with contributions from components with different concentration profiles.
Collapse
|
16
|
Hu Z, Sun X. All-Atom Nonadiabatic Semiclassical Mapping Dynamics for Photoinduced Charge Transfer of Organic Photovoltaic Molecules in Explicit Solvents. J Chem Theory Comput 2022; 18:5819-5836. [PMID: 36073792 DOI: 10.1021/acs.jctc.2c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct all-atom simulation of nonadiabatic dynamics in disordered condensed phases like liquid solutions and amorphous solids has been challenging. The first all-atom simulation of the photoinduced charge-transfer dynamics of a prototypical organic photovoltaic carotenoid-porphyrin-C60 molecular triad in explicit tetrahydrofuran is presented. Based on the Meyer-Miller mapping Hamiltonian, various semiclassical and mixed quantum-classical dynamics are employed, including the linearized semiclassical, symmetrical quasiclassical, mean-field Ehrenfest, classical mapping model, and spin-mapping model approaches. The all-atom nonadiabatic dynamics were compared to multi-state harmonic models with a globally shared bath, and the models built using the ensemble averages on the initial electronic state could reproduce the all-atom results. The solvent effect was found to be critical for the photoinduced charge transfer, and the time-dependent solute-solvent radial distribution functions revealed that only the nonadiabatic dynamics started with the effective forces on the initial electronic state could capture the correct nuclear dynamics. The proposed strategy for modeling condensed-phase nonadiabatic dynamics with atomistic details is readily applied to complex condensed-phase systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiang Sun
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
17
|
Rioux B, Combes J, Woolley JM, Rodrigues NDN, Mention MM, Stavros VG, Allais F. From Biomass-Derived p-Hydroxycinnamic Acids to Novel Sustainable and Non-Toxic Phenolics-Based UV-Filters: A Multidisciplinary Journey. Front Chem 2022; 10:886367. [PMID: 35864863 PMCID: PMC9294603 DOI: 10.3389/fchem.2022.886367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Although organic UV-filters are extensively used in cosmetics to protect consumers from the deleterious effects of solar UV radiation-exposure, they suffer from some major drawbacks such as their fossil origin and their toxicity to both humans and the environment. Thus, finding sustainable and non-toxic UV-filters is becoming a topic of great interest for the cosmetic industry. A few years ago, sinapoyl malate was shown to be a powerful naturally occurring UV-filter. Building on these findings, we decided to design and optimize an entire value chain that goes from biomass to innovative biobased and non-toxic lignin-derived UV-filters. This multidisciplinary approach relies on: 1) The production of phenolic synthons using either metabolite extraction from biomass or their bioproduction through synthetic biology/fermentation/in stream product recovery; 2) their functionalization using green chemistry to access sinapoyl malate and analogues; 3) the study of their UV-filtering activity, their photostability, their biological properties; and 4) their photodynamics. This mini-review aims at demonstrating that combining biotechnology, green chemistry, downstream process and photochemistry is a powerful approach to transform biomass and, in particular lignins, into high value-added innovative UV-filters.
Collapse
Affiliation(s)
- Benjamin Rioux
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | - Jeanne Combes
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | - Jack M. Woolley
- Department of Chemistry, University of Warwick, Coventry, United Kingtom
| | - Natércia d. N. Rodrigues
- Department of Chemistry, University of Warwick, Coventry, United Kingtom
- Lipotec SAU, Barcelona, Spain
| | - Matthieu M. Mention
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | | | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| |
Collapse
|