1
|
Kim SJ, Maligal-Ganesh RV, Mahmood J, Babar P, Yavuz CT. Structural control over single-crystalline oxides for heterogeneous catalysis. Nat Rev Chem 2025:10.1038/s41570-025-00715-5. [PMID: 40295894 DOI: 10.1038/s41570-025-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Oxides are integral to heterogeneous catalysis, serving critical roles such as catalyst supports, active materials and electrodes. A highly ordered subset, single-crystalline oxides, have traditionally been used as model catalyst supports in fundamental surface science studies. However, advancements in bulk synthesis have rendered their general use more feasible for real-world applications. In this review, we explore the efficiency of single-crystalline oxides as active metals and supports across a wide range of heterogeneous processes, often performing exceptionally well. Beginning with synthetic methods, we discuss the advantages of single-crystalline oxides in thermo-, electro- and photocatalysis. Previously held conventions about catalytic activity, deactivation and surface-adsorbate interactions are re-evaluated by understanding how these ordered materials behave during the respective reactions. Last, we assess advances in characterization techniques and their impact on designing the next generation of catalysts based on single-crystalline oxides.
Collapse
Affiliation(s)
- Seok-Jin Kim
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raghu V Maligal-Ganesh
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Sciences, Krea University, Sri City, India
| | - Javeed Mahmood
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pravin Babar
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cafer T Yavuz
- Oxide and Organic Nanomaterials for Energy and Environment Laboratory, Chemistry Program, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- KAUST Catalysis Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Li H, Yuan S, You J, Zhao C, Cheng X, Luo L, Yan X, Shen S, Zhang J. Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis. NANO-MICRO LETTERS 2025; 17:225. [PMID: 40257747 PMCID: PMC12011709 DOI: 10.1007/s40820-025-01719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Urgent requirements of the renewable energy boost the development of stable and clean hydrogen, which could effectively displace fossil fuels in mitigating climate changes. The efficient interconversion of hydrogen and electronic is highly based on polymer electrolyte membrane fuel cells (PEMFCs) and water electrolysis (PEMWEs). However, the high cost continues to impede large-scale commercialization of both PEMFC and PEMWE technologies, with the expense primarily attributed to noble catalysts serving as a major bottleneck. The reduction of Pt loading in PEMFCs is essential but limited by the oxygen transport resistance in the cathode catalyst layers (CCLs), while the oxygen transport in anode catalyst layers (ACLs) in PEMWEs also being focused as the Ir/IrOx catalyst reduced. The pore structure and the catalyst-ionomer agglomerates play important roles in the oxygen transport process of both PEMFCs and PEMWEs due to the similarity of membrane electrode assembly (MEA). Herein, the oxygen transport mechanism of PEMFCs in pore structure and ionomer thin films in CCLs is systematically reviewed, while state-of-the-art strategies are presented for enhancing oxygen transport and performance through materials and structural design. The deeply research opens avenues for exploring similar key scientific problems in oxygen transport process of PEMWEs and their further development.
Collapse
Affiliation(s)
- Huiyuan Li
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shu Yuan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiabin You
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Congfan Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaojing Cheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Zakary O, Body M, Sarou-Kanian V, Charpentier T, Legein C. Revealed Preferential Short-Range Anion Ordering in Disordered RbM 2O 5F (M = Nb, Ta) Pyrochlore-Type Oxyfluorides. Inorg Chem 2025; 64:5764-5777. [PMID: 40073073 DOI: 10.1021/acs.inorgchem.5c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Describing the crystal structure of disordered materials with mixed-occupancy crystallographic sites is essential for understanding their physicochemical properties and designing new materials tuned to their targeted functionalities. Here, we investigate the structure of RbM2O5F (M = Nb, Ta) pyrochlore-type oxyfluorides using a multimodal approach that combines experimental and computational techniques. Rietveld structural refinement of powder X-ray powder diffraction (PXRD) data confirmed that these oxyfluorides are isostructural, and their average crystal structure is disordered. The anionic site, 48f, is co-occupied by O and F, while the Rb site, 32e, is occupied at 25%. The shapes of the high-field solid-state 19F MAS, and 87Rb and 93Nb (CT)MAS and 3QMAS NMR spectra indicate that the local environment of these nuclei is distributed. Using the "supercell" approach, models incorporating different anion arrangements and Rb atoms distributed in their crystallographic sites were built and relaxed using density functional theory (DFT), and NMR parameters for 19F, 87Rb, and 93Nb, were computed using the PAW and GIPAW approaches. The models showing the best agreement between computed and experimental NMR parameters are made up exclusively of [MO5F]6- octahedra, [RbO15F3]32-, [RbO16F2]33-, and [RbO14F4]31- cages, indicating the existence of a preferential short-range anion ordering in these pyrochlores instead of the expected random distribution.
Collapse
Affiliation(s)
- Ouail Zakary
- Institut des Molécules et Matériaux du Mans (IMMM)─UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Monique Body
- Institut des Molécules et Matériaux du Mans (IMMM)─UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux, Haute Température et Irradiation (CEMHTI), UPR3079 CNRS, 45071 Orléans, France
| | | | - Christophe Legein
- Institut des Molécules et Matériaux du Mans (IMMM)─UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| |
Collapse
|
4
|
Yang Y, Xiao Z, Ouyang J, Guo Y. Synergistic efficacy of orthokeratology and 0.01% atropine in controlling pediatric myopia progression: A retrospective analysis. J Investig Med 2025; 73:290-299. [PMID: 39679531 DOI: 10.1177/10815589241308819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study investigates the combined efficacy of orthokeratology lenses and 0.01% atropine in controlling the progression of pediatric progressive myopia. The study, conducted retrospectively on 33 children aged 8-14, measured key parameters, including axial length growth, uncorrected visual acuity (UCVA), intraocular pressure (IOP), tear film breakup time (TBUT), and pupil diameter. The results revealed a significant reduction in axial length growth with the combined treatment compared to orthokeratology alone, while UCVA and IOP remained stable. TBUT decreased, and pupil diameter increased post-treatment. The findings suggest that combining orthokeratology with low-dose atropine offers a safe and effective strategy for managing pediatric myopia, particularly in younger patients.
Collapse
|
5
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
7
|
Liu S, Zhang Y, Hao L, Nsabimana A, Shen S. Designing ternary Co-Ni-Fe layered double hydroxides within a novel 3D cross-flower framework for efficient catalytic performance in oxygen evolution reaction. J Colloid Interface Sci 2025; 678:924-933. [PMID: 39326164 DOI: 10.1016/j.jcis.2024.09.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In this study, we synthesized novel three-dimensional (3D) cross-flowered Co-Ni metal-organic framework (Co-Ni-MOF) precursors using the chemical precipitation method. Subsequently, we obtained Co-Ni-Fe layered double hydroxides (Co-Ni-Fe-LDHs) through an ion exchange strategy, which preserved their original morphology while consisting of ultrathin layered hydroxide nanosheets. The interlayer spacing of the LDH lamellar structure was finely tuned by varying the ratios of Co to Ni. The results demonstrated that Co-Ni-Fe LDHs, characterized by a unique three-dimensional cross-shaped structure and an optimal composition ratio of Co2+:Ni2+ = 2:1, exhibited increased interlayer spacing. This structural characteristic contributed to their excellent electrochemical performance, positioning them as optimal electrode materials for catalytic oxygen evolution reactions (OER). Our observations revealed that Co-Ni-Fe-LDHs exhibited remarkable OER activity, characterized by a low Tafel slope of 41.82 mV dec-1, a low overpotential of 322 mV at a current density of 10 mA cm-2, and outstanding stability over a 48-hour period. In-situ Raman spectroscopy results indicated that the active site of the composite was γ-CoOOH. Additionally, the room temperature stirring and standing strategy employed in this study is easier to scale up and yields a higher quantity of reaction products compared to traditional high-temperature and high-pressure conditions. This investigation provides novel insights into the design and fabrication of Co-Ni-Fe-LDHs catalyst with 3D cross-flower structures, demonstrating enhanced electrocatalytic activity and commendable stability. These findings suggest promising applications in the field of electrolyzed water.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, School of Eco-Environment, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, School of Eco-Environment, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Shigang Shen
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, School of Eco-Environment, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
8
|
Zhang S, Xu W, Chen H, Yang Q, Liu H, Bao S, Tian Z, Slavcheva E, Lu Z. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311322. [PMID: 38299450 DOI: 10.1002/adma.202311322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Seawater electrolysis for hydrogen production is a sustainable and economical approach that can mitigate the energy crisis and global warming issues. Although various catalysts/electrodes with excellent activities have been developed for high-efficiency seawater electrolysis, their unsatisfactory durability, especially for anodes, severely impedes their industrial applications. In this review, attention is paid to the factors that affect the stability of anodes and the corresponding strategies for designing catalytic materials to prolong the anode's lifetime. In addition, two important aspects-electrolyte optimization and electrolyzer design-with respect to anode stability improvement are summarized. Furthermore, several methods for rapid stability assessment are proposed for the fast screening of both highly active and stable catalysts/electrodes. Finally, perspectives on future investigations aimed at improving the stability of seawater electrolysis systems are outlined.
Collapse
Affiliation(s)
- Sixie Zhang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haocheng Chen
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qihao Yang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua Liu
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Shanjun Bao
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Ziqi Tian
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Evelina Slavcheva
- "Acad. Evgeni Budevski" Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Akad. G. Bonchev 10, Sofia, 1113, Bulgaria
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Ghosh B, Zhang C, Frick S, Cho EJ, Woods T, Yang Y, Perry NH, Klein A, Yang H. Defect Engineering in Composition and Valence Band Center of Y 2(Y xRu 1-x) 2O 7-δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:18524-18534. [PMID: 38820244 DOI: 10.1021/jacs.4c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Oxygen evolution reaction (OER) takes place in various types of electrochemical devices that are pivotal for the conversion and storage of renewable energy. This paper describes a strategy in the design of solid-state structures of OER electrocatalysts through controlling the cation substitution on the active metal site and consequently valence band center position of site-mixed Y2(YxRu1-x)2O7-δ pyrochlore to achieve high catalytic activity. We found that partially replacing the B-site Ru4+ cation with A-site Y3+ in pyrochlore-structured Y2Ru2O7-δ modifies the oxidation state of B-site Ru from 4+ to 5+, as observed by electron paramagnetic resonance (EPR) spectroscopy but does not continuously increase the oxygen vacancy concentration in these oxygen substoichiometric compositions, as quantified by thermogravimetric analysis (TGA) decomposition studies. We found the increased Ru oxidation state leads to a downshift in valence band center. X-ray photoelectron spectroscopy (XPS) analysis was performed to quantitatively determine the optimal band center to be ∼1.27 eV below the Fermi energy level based on the analysis of the valence band edge of these Ru-based Y2(YxRu1-x)2O7-δ OER electrocatalysts. This work highlights that defect engineering can be a practical, effective approach to the optimization of oxidation state and electronic band center for high OER catalytic performance in a quantitative manner.
Collapse
Affiliation(s)
- Bidipta Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Stefanie Frick
- Department of Electronic Structure of Materials, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, Darmstadt, Germany, 64287
| | - En Ju Cho
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Toby Woods
- Center of Research and Educational Support, X-ray Diffraction Laboratory, School of Chemical Sciences, University of Illinois Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yujie Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicola H Perry
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Andreas Klein
- Department of Electronic Structure of Materials, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, Darmstadt, Germany, 64287
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Zhang J, Shi L, Miao X, Zhou S, Yang L. Promotion of Acid-Water Oxidation by Lattice Distortion and Orbital Hybridization Induced by Ionic Dopant in Pyrochlore Y 2Ru 2O 7. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21905-21914. [PMID: 38634487 DOI: 10.1021/acsami.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
For acid-water oxidation, pyrochloric ruthenates are thought to be extremely effective electrocatalysts. In this work, through partial B-site replacement with larger M2+ cations, the electronic states of Y2Ru2O7 with strong electron correlations are reasonably managed, by which the inherent performance is tremendously promoted. Based on this, the improved Y2Ru1.9Sr0.1O7 electrocatalyst exhibits an outstanding durability and presents a highly inherent mass activity of 1915.1 A gRu-1 (at 1.53 V vs RHE). The enhanced oxygen-evolving reaction (OER) activity by ionic dopant in YRO pyrochlore can be attributed to two aspects, i.e., the lattice distortion induced inhibition of the grain coarsening, which results in a large surface area for YRO-M and increases the OER active sites, and the weakening of electron correlation via broadening of the Ru 4d bandwidths due to the increase of the average radius of B-site ions, which gives rise to an enhancement of conductivity and a strengthened hybridization between Ru 4d and O 2p orbitals and improves the reaction kinetics. The synergistic effects of lattice distortion and orbital hybridization promote the enhanced OER activity. The results would provide fresh concepts for the design of improved electrocatalysts and underscore the significance of managing the intrinsic performance through the dual modification of microstructure morphology and electronic structure.
Collapse
Affiliation(s)
- Jinhui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Lei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xianbing Miao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Liping Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
11
|
Fan RY, Zhang YS, Lv JY, Han GQ, Chai YM, Dong B. The Promising Seesaw Relationship Between Activity and Stability of Ru-Based Electrocatalysts for Acid Oxygen Evolution and Proton Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304636. [PMID: 37789503 DOI: 10.1002/smll.202304636] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Indexed: 10/05/2023]
Abstract
The development of electrocatalysts that are not reliant on iridium for efficient acid-oxygen evolution is a critical step towards the proton exchange membrane water electrolysis (PEMWE) and green hydrogen industry. Ruthenium-based electrocatalysts have garnered widespread attention due to their remarkable catalytic activity and lower commercial price. However, the challenge lies in balancing the seesaw relationship between activity and stability of these electrocatalysts during the acid-oxygen evolution reaction (OER). This review delves into the progress made in Ru-based electrocatalysts with regards to acid OER and PEMWE applications. It highlights the significance of customizing the acidic OER mechanism of Ru-based electrocatalysts through the coordination of adsorption evolution mechanism (AEM) and lattice oxygen oxidation mechanism (LOM) to attain the ideal activity and stability relationship. The promising tradeoffs between the activity and stability of different Ru-based electrocatalysts, including Ru metals and alloys, Ru single-atomic materials, Ru oxides, and derived complexes, and Ru-based heterojunctions, as well as their applicability to PEMWE systems, are discussed in detail. Furthermore, this paper offers insights on in situ control of Ru active sites, dynamic catalytic mechanism, and commercial application of PEMWE. Based on three-way relationship between cost, activity, and stability, the perspectives and development are provided.
Collapse
Affiliation(s)
- Ruo-Yao Fan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yu-Sheng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jing-Yi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Guan-Qun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
12
|
Saini A, Das C, Rai S, Guha A, Dolui D, Majumder P, Dutta A. A homogeneous cobalt complex mediated electro and photocatalytic O 2/H 2O interconversion in neutral water. iScience 2023; 26:108189. [PMID: 37920669 PMCID: PMC10618691 DOI: 10.1016/j.isci.2023.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The O2/H2O redox couple is vital in various renewable energy conversion strategies. This work delves into the Co(L-histidine)2 complex, a functional mimic of oxygen-carrying metalloproteins, and its electrochemical behavior driving the bidirectional oxygen reduction (ORR) and oxygen evolution (OER) activity in neutral water. This complex electrocatalyzes O2 via two distinct pathways: a two-electron O2/H2O2 reduction (catalytic rate = 250 s-1) and a four-electron O2 to H2O production (catalytic rate = 66 s-1). The formation of the key trans-μ-1,2-Co(III)-peroxo intermediate expedites this process. Additionally, this complex effectively oxidizes water to O2 (catalytic rate = 15606 s-1) at anodic potentials via a Co(IV)-oxo species. Additionally, this complex executes the ORR and OER under photocatalytic conditions in neutral water in the presence of appropriate photosensitizer (Eosin-Y) and redox mediators (triethanolamine/ORR and Na2S2O8/OER) at an appreciable rate. These results highlight one of the early examples of both electro- and photoactive bidirectional ORR/OER catalysts operational in neutral water.
Collapse
Affiliation(s)
- Abhishek Saini
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aritra Guha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dependu Dolui
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Piyali Majumder
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Hao Y, Guo Z, Cheng H, Yao C, Cheng S, Yi L, Li H. Modulating the electronic structures of cobalt-organic frameworks for efficient electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 650:1949-1957. [PMID: 37517194 DOI: 10.1016/j.jcis.2023.07.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The oxygen evolution reaction (OER) is a key process in various energy storage/generation technologies. Tuning the electronic structures of catalysts is an effective approach to improve the catalyst's activity. In this work, we synthesized Ce-doped cobalt-organic frameworks with benzene-1, 4-dicarboxylic acid (BDC) as the ligand as efficient OER electrocatalysts (denoted as Co3Ce1 BDC) with excellent stability and improved catalytic performance. The introduced Ce in Co3Ce1 BDC changes the surface configuration and tunes electronic structures of the active Co site, leading to enhanced interaction between intermediates and catalysts. Besides, the specific surface area, reaction kinetics, charge transfer efficiency, and turnover frequency are also improved in the presence of Ce. As a result, the Co3Ce1 BDC demonstrated excellent performance with a low overpotential of 285 mV at a current of 10 mA·cm-2, a preferable Tafel slope of 56.1 mV·dec-1, and an excellent durability in 1 M KOH, indicating the potential for practical applications in water splitting and other energy storage technologies wherein the OER plays a critical role. Comprehensive theoretical calculations and modeling further identified the key role of Ce in modulating the electronic structure and OER activity of cobalt-organic frameworks. Most importantly, this work provides a new strategy to the development of efficient cobalt-organic framework catalysts in OER-related applications.
Collapse
Affiliation(s)
- Yongchao Hao
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Huiya Cheng
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Chenghao Yao
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuling Cheng
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lizhi Yi
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
14
|
Li W, Wu W, Yu L, Sun J, Xu L, Wang Y, Lu Q. Acid Etching Strategy: Optimizing Bifunctional Activities of Metal/Nitrogen-doped Carbon Catalysts for Efficient Rechargeable Zn-Air Batteries. Chem Asian J 2023; 18:e202300547. [PMID: 37544904 DOI: 10.1002/asia.202300547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-embedded heteroatom carbon composites are regarded as an important branch of bifunctional catalysts for rechargeable Zn-air batteries. The inevitable transition metal particles on the carbon skeleton may affect the availability of the metal-heteroatom-carbon catalytic site. Herein, we propose an acid treatment strategy to remove the bare transition metal particles, thus regulating the electrochemical surface area. The OER activities are highly related to the electrochemical surface area for the catalysts with different acid treatment times. In addition, there exists an optimal acid treatment time to achieve the highest ORR and OER activities with the ΔE value of 0.75 V. Given the superior bifunctional activities after acid treatment, we further assemble the rechargeable Zn-air batteries with the optimal catalyst, which achieves a peak power density of 364 mW cm-2 and long cycling life of 500 h at 10 mA cm-2 . This work affords an efficient strategy to enhance the ORR/OER activities and may guide the design of transition metal/heteroatom carbon composites.
Collapse
Affiliation(s)
- Wangzu Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Weixing Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Luo Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jiping Sun
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
| | - Qian Lu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, S. A. R, 999077, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Environment and Energy Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
15
|
Pei Z, Zhang H, Wu ZP, Lu XF, Luan D, Lou XWD. Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. SCIENCE ADVANCES 2023; 9:eadh1320. [PMID: 37379398 DOI: 10.1126/sciadv.adh1320] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Manipulating the intrinsic activity of heterogeneous catalysts at the atomic level is an effective strategy to improve the electrocatalytic performances but remains challenging. Here, atomically dispersed Ni anchored on CeO2 particles entrenched on peanut-shaped hollow nitrogen-doped carbon structures (a-Ni/CeO2@NC) is rationally designed and synthesized. The as-prepared a-Ni/CeO2@NC catalyst exhibits substantially boosted intrinsic activity and greatly reduced overpotential for the electrocatalytic oxygen evolution reaction. Experimental and theoretical results demonstrate that the decoration of isolated Ni species over the CeO2 induces electronic coupling and redistribution, thus resulting in the activation of the adjacent Ce sites around Ni atoms and greatly accelerated oxygen evolution kinetics. This work provides a promising strategy to explore the electronic regulation and intrinsic activity improvement at the atomic level, thereby improving the electrocatalytic activity.
Collapse
Affiliation(s)
- Zhihao Pei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhi-Peng Wu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Deyan Luan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| |
Collapse
|