1
|
Shaked SA, Weil S, Manor R, Aflalo ED, Moscovitz S, Maman N, Maria R, Kruppke B, Hanke T, Eichler J, Ratzker B, Sokol M, Sagi A. Cuticular proteins (crusticuls) affect 3D chitin bundle nanostructure. NANOSCALE 2025. [PMID: 40405565 DOI: 10.1039/d5nr01455g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The crustacean exoskeleton features a micrometric, three-dimensional chitin scaffold. The intricate organization of this structure makes it an ideal model for investigating scaffold proteins at the nanoscale. Periodic exoskeleton replacement during a rapid and punctual molt cycle involves proteins that govern exoskeleton formation. Relying on binary expression pattern analysis of a molt-related transcriptomic library generated from the cuticle-forming epithelium of the crayfish Cherax quadricarinatus, a family of crustacean cuticle structural proteins termed 'crusticuls' was discovered and shown to present an exoskeleton formation-related expression pattern. All nine crusticuls include a chitin-binding domain bordered by two acidic residue-rich regions, putative functional domains related to exoskeletal formation and biomineralization. Crusticuls knock-down via RNAi resulted in over 95% reduced relative expression in treated versus control crayfish, with phenotypic effects ranging from prolonged molt cycles to lethality. Crusticuls were largely absent from newly formed cuticles following knockdown, resulting in exoskeletal deformities in the three-dimensional organization of chitinous bundles at the micro- and nanometric scales. These structural alterations were phenotypically translated into changes in cuticular hardness and elasticity. The identification of crusticuls as being key for proper nanometric three-dimensional organization of cuticular chitinous scaffolds opens new avenues for synthetic scaffold bio-mimetic applications.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Israel
| | - Sharon Moscovitz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Barak Ratzker
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Tang J, Feng S, Yang M. Anisotropy-dependent chirality transfer from cellulose nanocrystals to β-FeOOH nanowhiskers. Chem Sci 2025:d4sc07747d. [PMID: 40134654 PMCID: PMC11931430 DOI: 10.1039/d4sc07747d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Chiral iron oxides and hydroxides have garnered considerable interest owing to the unique combination of chirality and magnetism. However, improving their g-factor, which is critical for optimizing the chiral magneto-optical response, remains elusive. We demonstrated that the g-factor of β-FeOOH could be boosted by enhancing the anisotropy of nanostructures during a biomimetic mineralization process. Cellulose nanocrystals were used as both mineralization templates and chiral ligands, driving oriented attachment of β-FeOOH nanoparticles and inducing the formation of highly aligned chiral nanowhiskers. Circular dichroism spectra and time-dependent density-functional theory proved that chirality transfer was induced from cellulose nanocrystals to β-FeOOH through ligand-metal charge transfer. Interestingly, chirality transfer was significantly enhanced during the elongation of nanowhiskers. A nearly 34-fold increase in the g-factor was observed when the aspect ratio of nanowhiskers increased from 2.6 to 4.4, reaching a g-factor of 5.7 × 10-3, superior to existing dispersions of chiral iron oxides and hydroxides. Semi-empirical quantum calculations revealed that such a remarkable improvement in the g-factor could be attributed to enhanced dipolar interactions. Cellulose nanocrystals exert vicinal actions on highly anisotropic β-FeOOH with a large dipole moment, increasing structural distortions in the coordination geometry. This mechanism aligns with the static coupling principle of one-electron theory, highlighting the strong interaction potential of supramolecular templates. Furthermore, paramagnetic β-FeOOH nanowhiskers alter the magnetic anisotropy of cellulose nanocrystals, leading to a reversed response of helical photonic films to magnetic fields, promising for real-time optical modulation.
Collapse
Affiliation(s)
- Jinyu Tang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| | - Shouhua Feng
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| | - Ming Yang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| |
Collapse
|
3
|
Barbalinardo M, Falini G, Montroni D. Sustainable 3D Scaffolds Based on β-Chitin and Collagen I for Wound Dressing Applications. Polymers (Basel) 2025; 17:140. [PMID: 39861212 PMCID: PMC11769321 DOI: 10.3390/polym17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented. The influence of the ratio of this chitin polymorph to the collagen on the final material is then studied. The samples with 50:50 and 75:25 ratios produce promising results, such as remarkable water absorption (up to 7000 wt.%), exposed surface (up to 7 m2·g-1), and total pore volume (over 80 vol.%). The materials are also tested using wet mechanical compression, exhibiting a Young's modulus and tenacity (both calculated between 2% and 25% of deformation) of up to 20 Pa and 9 kPa, respectively. Fibroblasts, keratinocytes, and osteoblasts are grown on these scaffolds. The viability of fibroblasts and keratinocytes is observed for 72 h, whereas the viability of osteoblasts is observed for up to 21 days. Under the two conditions mentioned, cell activity and adhesion work even better than under its counterpart condition of pure collagen. In conclusion, these materials are promising candidates for sustainable regenerative medicine scaffolds or, specifically, as biodegradable wound dressings.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum−Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Devis Montroni
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum−Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
4
|
Choi J, Lee S, Lee Y, Hwang DS. Sticky organisms create underwater biological adhesives driven by interactions between EGF- and GlcNAc- containing polysaccharides. Nat Commun 2025; 16:233. [PMID: 39747843 PMCID: PMC11697411 DOI: 10.1038/s41467-024-55476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Marine and terrestrial organisms often utilise EGF/EGF-like domains in wet adhesives, yet their roles in adhesion remain unclear. Here, we investigate the Barbatia virescense byssal system and uncover an oxidation-independent, reversible, and robust adhesion mechanism where EGF/EGF-like domain tandem repetitions in adhesive proteins bind robustly to GlcNAc-based biopolymer. EGF/EGF-like-domain-containing proteins demonstrate over three-fold superior underwater adhesion to chitosan compared to the well-known strongest wet-adhesive proteins, mefp-5, and suckerin, when adhering to mica in an surface forces apparatus-based measurement. Additionally, as the degree of acetylation of chitosan decreases from 20.0 to 5.34%, the underwater adhesion energy between mefp-2 and chitosan decreases from |Wad | ≈ 41.80 to 12.92 ± 0.40 mJm-2. This finding highlights the importance of GlcNAc over GlcN in binding with EGF to formulate effective underwater adhesives, expanding our understanding of underwater adhesion and supporting EGF's functional role in biomedical wet adhesive interfaces, hydrogels, and chitosan applications.
Collapse
Affiliation(s)
- Jimin Choi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Seunghyeon Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Yongjin Lee
- Institute of Chemical Process, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
5
|
Yang W, Zou Q, Wang C, Ren Y, Zhang R, Lin M, Huang Z, Huangfu M, Lin L, Li W, Li X. Enhancing Bone Regeneration and Osteogenic Quality by n-HA Internalized Osteoblasts Synergized with ON Protein: Mechanistic Insights. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68967-68982. [PMID: 39638777 DOI: 10.1021/acsami.4c16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Bone scaffolds offer hope for oral jawbone repair, yet improving their osteogenic performance remains a clinical challenge. This study investigates a novel approach to enhance early bone formation and osteogenic quality by coloading hydroxyapatite (HA)─internalized osteoblasts (OHA) and osteonectin (ON) onto various scaffolds. Our findings demonstrated that the OHA could effectively facilitate the early bone regeneration by providing rapid calcium and phosphorus ion release via lysosome-mediated HA degradation, while the ON protein helps in ion deposition, cell proliferation, and matrix mineralization. When the PHA (PCL+HA) scaffold was incorporated with both the OHA and ON, the scaffold exhibited superior pro-osteogenic performance, driven by synergistic effects of rapid ion release from the OHA, slow ion release from the PHA, and upregulation of osteogenesis-related genes. The analyses of mechanisms revealed that the OHA activated MAPK and PI3K-Akt pathways, while ON stimulated calcium and Wnt signaling, collectively promoting the osteogenic potential. The strategy presented in this study paves a promising way for the development of advanced bone scaffolds to improve the bone regeneration quality.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Zou
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chenxin Wang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuankun Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingyue Lin
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zeyu Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengxin Huangfu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lili Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiyu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Mucaria A, Giuri D, Tomasini C, Falini G, Montroni D. Tunable Oxidized-Chitin Hydrogels with Customizable Mechanical Properties by Metal or Hydrogen Ion Exposure. Mar Drugs 2024; 22:164. [PMID: 38667781 PMCID: PMC11051383 DOI: 10.3390/md22040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline β-chitin fibrils (β-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from β-chitOx 1 wt.% at pH 9, inducing the gelation by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G'). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin's crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Devis Montroni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (A.M.); (D.G.); (C.T.); (G.F.)
| |
Collapse
|
7
|
Li J, Zhang X, Su Z, Li T, Wang Z, Dong S, Xu F, Ma X, Yin J, Jiang X. Self-wrinkling coating for impact resistance and mechanical enhancement. Sci Bull (Beijing) 2023; 68:2200-2209. [PMID: 37633832 DOI: 10.1016/j.scib.2023.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Protective materials are essential for personal, electronic, and military defenses owing to their efficient impact-resistant and energy-absorbing properties. Inspired by the bottom-up fabrication process and energy dissipation mechanism of natural organisms with hierarchical structures, we demonstrated a self-wrinkled photo-curing coating as a new protective material for enhancing the anti-impact property of the substrates. Owing to the self-assembly of polydimethylsiloxane (PDMS) containing polymeric photoinitiator on the surface, the liquid coating formulation was photo-cured by one-step UV irradiation with simultaneous generation of self-wrinkled surface morphology and a gradient cross-linked architecture. The maximum impact resistance height (hmax) of the glass substrate coated with plain coating increased from 120 to 180 cm when coated with wrinkled gradient coating. Furthermore, the Young's modulus, fracture stress, and toughness of the wrinkled gradient coating film improved from 39.6 MPa, 2.4 MPa, and 74.1 MJ/cm3 to 235.0 MPa (∼5× increase), 18.5 MPa (∼6.6× increase), and 845.0 MJ/cm3 (∼10.8× increase) compared to the pure coating film as reference. The theoretical simulation and experimental results proved that the surface self-wrinkled morphology and intrinsic hierarchical architecture contribute to the energy dissipation and impact resistance of the cured coating. The photo-curing process, a bottom-up strategy, is conducted in a non-contact mode compared with nano-printing and lithography, enabling bulk materials to be engineered.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoliang Zhang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Zhilong Su
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehong Wang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shilong Dong
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xu
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China.
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
9
|
Zhong J, Huang W, Zhou H. Multifunctionality in Nature: Structure-Function Relationships in Biological Materials. Biomimetics (Basel) 2023; 8:284. [PMID: 37504172 PMCID: PMC10807375 DOI: 10.3390/biomimetics8030284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Modern material design aims to achieve multifunctionality through integrating structures in a diverse range, resulting in simple materials with embedded functions. Biological materials and organisms are typical examples of this concept, where complex functionalities are achieved through a limited material base. This review highlights the multiscale structural and functional integration of representative natural organisms and materials, as well as biomimetic examples. The impact, wear, and crush resistance properties exhibited by mantis shrimp and ironclad beetle during predation or resistance offer valuable inspiration for the development of structural materials in the aerospace field. Investigating cyanobacteria that thrive in extreme environments can contribute to developing living materials that can serve in places like Mars. The exploration of shape memory and the self-repairing properties of spider silk and mussels, as well as the investigation of sensing-actuating and sensing-camouflage mechanisms in Banksias, chameleons, and moths, holds significant potential for the optimization of soft robot designs. Furthermore, a deeper understanding of mussel and gecko adhesion mechanisms can have a profound impact on medical fields, including tissue engineering and drug delivery. In conclusion, the integration of structure and function is crucial for driving innovations and breakthroughs in modern engineering materials and their applications. The gaps between current biomimetic designs and natural organisms are also discussed.
Collapse
Affiliation(s)
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.Z.); (H.Z.)
| | | |
Collapse
|
10
|
Montroni D, Di Giosia M, Calvaresi M, Falini G. Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules 2022; 27:molecules27175633. [PMID: 36080399 PMCID: PMC9457544 DOI: 10.3390/molecules27175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.
Collapse
|
11
|
Xia L, Wang Q, Hu M. Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:763-777. [PMID: 36051312 PMCID: PMC9379653 DOI: 10.3762/bjnano.13.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/09/2023]
Abstract
Various kinds of monocrystalline coordination polymers are available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building blocks with other components. Recently, nanoarchitectonics has started to play a significant role in the field of coordination polymers. In this short review, we summarize recent advances in nanoarchitectures based on monocrystalline coordination polymers that are formed through confined assembly. We first discuss the crystallization of coordination polymer single crystals inside confined liquid networks or on substrates through assembly of nodes and ligands. Then, we discuss assembly of preformed coordination polymer single crystals inside confined liquid networks or on substrates. In each part, we discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications.
Collapse
Affiliation(s)
- Lingling Xia
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinyue Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Montroni D, Kobayashi T, Hao T, Lublin D, Yoshino T, Kisailus D. Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications. J Funct Biomater 2022; 13:83. [PMID: 35735938 PMCID: PMC9225658 DOI: 10.3390/jfb13020083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022] Open
Abstract
A fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different architectural features from the nano- to the millimeter scale during extrusion. Chitin-based gel fibers with a water content of around 1500% were obtained extruding a polymeric solution of chitin into a counter solvent, water, inducing instant solidification of the material. A certain degree of fibrillar alignment was achieved basing on the shear stress induced by the nozzle. In this study we took into account a single variable, the nozzle's internal diameter (NID). In fact, a positive correlation between NID, fibril alignment, and mechanical resistance was observed. A negative correlation with NID was observed with porosity, exposed surface, and lightly with water content. No correlation was observed with maximum elongation (~50%), and the scaffold's excellent biocompatibility, which appeared unaltered. Overall, a single variable allowed a customization of different material features, which could be further tuned, adding control over other aspects of the synthetic process. Moreover, this manufacturing could be potentially applied to any polymer.
Collapse
Affiliation(s)
- Devis Montroni
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA or (D.M.); (T.H.)
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Takeru Kobayashi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan; (T.K.); (T.Y.)
| | - Taige Hao
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA or (D.M.); (T.H.)
| | - Derek Lublin
- Materials and Manufacturing Technology Program, School of Engineering, University of California at Irvine, Irvine, CA 92697, USA;
| | - Tomoko Yoshino
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan; (T.K.); (T.Y.)
| | - David Kisailus
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA or (D.M.); (T.H.)
| |
Collapse
|