1
|
Taspinar Ö, Leonard DJ, Picois N, Göcke C, Žabka M, Sparkes HA, Clayden J. Asymmetric Intramolecular α-Arylation of Polar Amino Acids Bearing β-Leaving Groups. Angew Chem Int Ed Engl 2025:e202507713. [PMID: 40333341 DOI: 10.1002/anie.202507713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/09/2025]
Abstract
The α-arylation of amino acids may be achieved by intramolecular nucleophilic aromatic substitution (SNAr) reactions of amino-acid derived enolates, but for amino acids bearing β-leaving groups, such reactions are complicated by competing E1cB elimination of the β-substituent. In this paper we report an approach to the arylation of the polar amino acids serine, cysteine, diaminopropionic acid, and allothreonine by inducing intramolecular SNAr reactions of heterocycles, which the heteroatom substituent is stereoelectronically protected from elimination by incorporating it into the ring system of N-carbamoyl oxazolidines, thiazolidines, or imidazolidines. The sequence comprises the diastereoselective formation of a heterocyclic urea followed by an intramolecular N-to-C aryl migration, yielding bicyclic hydantoins that can be further hydrolysed to afford quaternary α-aryl amino acids. The method is practical and scalable, avoids the use of transition metals or chiral auxiliaries, and provides the opportunity to access a variety of α-arylated products bearing electronically diverse benzenoid or heterocyclic substituents (35 examples).
Collapse
Affiliation(s)
- Ömer Taspinar
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Daniel J Leonard
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Nathan Picois
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Cornelia Göcke
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Matej Žabka
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Hazel A Sparkes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
2
|
Fu W, Murcek K, Chen J, Liu A, Zhao Y, Liu P, Yang Y. Catalytic Enantioselective Smiles Rearrangement Enabled by the Directed Evolution of P450 Radical Aryl Migratases. J Am Chem Soc 2025; 147:12197-12205. [PMID: 40167238 DOI: 10.1021/jacs.5c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Despite its synthetic potential, catalytic enantioselective Smiles rearrangement has remained elusive. Through the directed evolution of P450 radical aryl migratases (P450Smiles's), we describe the first example of catalytic enantioselective Smiles rearrangement. A range of racemic N-arylsulfonyl-α-chloroamides could be transformed by P450Smiles in an enantioconvergent manner, affording acyclic amide products possessing an all-carbon quaternary stereocenter with excellent chemo- and enantioselectivity. Both electron-rich and electron-deficient substituents were compatible with the migrating aryl group, demonstrating this P450-catalyzed Smiles rearrangement is insensitive to the electronic properties of the migrating group. Importantly, our evolved P450 variants were capable of overriding the innate cyclization activity of the N-alkyl amidyl radical intermediate, allowing the chemoselective reductive formation of acyclic products. Classical molecular dynamics (MD) simulations revealed this unusual enzyme-controlled chemoselectivity stems from the restricted conformation of the amidyl radical within the enzyme active site, disfavoring the cyclization pathway. This new-to-nature biocatalytic asymmetric Smiles rearrangement showcases the synthetic potential of enzymatic chemo- and enantioselectivity control over highly reactive radical intermediates eluding small-molecule catalysts.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Katherina Murcek
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jasper Chen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - An Liu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Seliger J, Fries LR, Meinhardt JM, Knowles RR. Photoredox-Catalyzed Nucleophilic Aromatic Substitution of Halophenols with Azoles via Oligomeric Phenylene Oxide Radicals. J Am Chem Soc 2025; 147:9931-9938. [PMID: 40048652 DOI: 10.1021/jacs.5c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nucleophilic aromatic substitution (SNAr) reactions are widely employed in organic synthesis yet typically require the use of electron-deficient arenes for efficient reactivity. Herein, we report a photocatalytic protocol for formal SNAr of electron-rich 4-halophenols with azole nucleophiles under mild, redox-neutral conditions. The transformation proceeds via a two-stage mechanism consisting of initial halophenol oligomerization to produce a key oligo(phenylene oxide) intermediate and its subsequent breakdown through SNAr with the azole enabled by photoredox-catalyzed arene umpolung. Reaction monitoring, stoichiometric control experiments, and luminescence quenching data implicate phenoxyl radicals and Brønsted acid-activated oligo(phenylene oxide) radicals as the reactive species in the oligomerization and the SNAr stages, respectively. The synthetic utility of this method is demonstrated across 17 (pseudo)halophenols bearing a variety of leaving groups (F, Cl, Br, OMs, and OTs) and 22 azole examples.
Collapse
Affiliation(s)
- Jan Seliger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Lydia R Fries
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jonathan M Meinhardt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Tampellini N, Mercado BQ, Miller SJ. Enantiocontrolled Cyclization to Form Chiral 7- and 8-Membered Rings Unified by the Same Catalyst Operating with Different Mechanisms. J Am Chem Soc 2025; 147:4624-4630. [PMID: 39847512 PMCID: PMC11815475 DOI: 10.1021/jacs.4c17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Chiral medium-sized rings, albeit displaying attractive properties for drug development, suffer from numerous synthetic challenges due to difficult cyclization steps that must take place to form these unusually strained, atropisomeric rings from sterically crowded precursors. In fact, catalytic enantioselective cyclization methods for the formation of chiral seven-membered rings are unknown, and the corresponding eight-membered variants are also sparse. In this work, we present a substrate preorganization-based, enantioselective, organocatalytic strategy to construct seven- and eight-membered rings featuring chirality that is intrinsic to the ring in the absence of singular stereogenic atoms or single bond axes of chirality. The reactions proceed under mild conditions and with high levels of stereocontrol. Notably, the same bifunctional iminophosphorane chiral catalyst orchestrates the cyclization of substrates of two different ring sizes, under two different mechanistic paradigms. We envision that the mechanistic and ring size versatility of this method could guide further applications of asymmetric catalysis to other challenging cyclization reactions.
Collapse
Affiliation(s)
- Nicolò Tampellini
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Liu G, Ma D, Zhang J, Yang F, Gao Y, Su W. CO 2-promoted photocatalytic aryl migration from nitrogen to carbon for switchable transformation of N-arylpropiolamides. Nat Commun 2024; 15:10153. [PMID: 39578418 PMCID: PMC11584665 DOI: 10.1038/s41467-024-54239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Photocatalytic N-to-C aryl migration allows for quick construction of highly useful amide derivatives from readily available compounds. By developing the reactions of sodium sulfinates with the N-aryl-propiolamides, we herein demonstrate that the CO2-promoted visible-light-induced method enables a large variety of aryl groups on nitrogen atoms of the N-arylamides to undergo efficient aryl migration from N atom to C atom to synthesize tetra- and tri-substituted alkenyl amides selectively. 1,4-N-to-C aryl migration is a key step in this transformation which is achieved through photocatalytic radical-polar crossover pathway. The protocol exhibits the remarkably tolerant of the electronic properties of the migrating aryl substituent, as both electron-rich and -poor arenes are compatible with the migration process. As a result, this protocol features with a broad substrate scope, as demonstrated by more than 90 examples including complex bioactive compounds. Notably, abundant, nontoxic and low-cost CO2 acted as an essential and irreplaceable additive to enable the tetra- and tri-substituted alkenyl amides to be synthesized with excellent selectivity.
Collapse
Affiliation(s)
- Ge Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, PR China
| | - Jianchen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanyuanhang Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
6
|
Suzuki M, Kasahara H, Moriyama K. Oxidative Remote Aryl Rearrangement of N-Cinnamyl- N-alkoxybenzyl Sulfonamides Using Hypervalent Iodine(III). Org Lett 2024; 26:8768-8773. [PMID: 39388216 DOI: 10.1021/acs.orglett.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
An oxidative remote aryl rearrangement of N-cinnamyl-N-alkoxybenzyl sulfonamides with a hypervalent iodine(III) compound was developed to furnish 5,6-disubstituted 1,3-oxazinanes in high yields. This reaction proceeded through the dearomatization of the alkoxybenzene ring on the benzyl group, which acts as a good aryl donor, inducing the regioselective installation of the aryl group and the oxygen atom via cascade transformation. An enantioselective oxidative remote aryl rearrangement using C2-symmetrical chiral iodoarene gave enantioenriched products with high enantioselectivity.
Collapse
Affiliation(s)
- Mami Suzuki
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Honoka Kasahara
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
8
|
Lan L, Xu K, Zeng C. The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement. Chem Sci 2024; 15:13459-13465. [PMID: 39183920 PMCID: PMC11339951 DOI: 10.1039/d4sc02821j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
The reductive activation of chemical bonds at less negative potentials provides a foundation for high functional group tolerance and selectivity, and it is one of the central topics in organic electrosynthesis. Along this line, we report the design of a dual-activation mode by merging electro-reduction with hydrogen bonding activation. As a proof of principle, the reduction potential of N-phenylpropiolamide was shifted positively by 218 mV. Enabled by this strategy, the radical Smiles rearrangement of N-arylpropiolamides without external radical precursors and prefunctionalization steps was accomplished. [DBU][HOAc], a readily accessible ionic liquid, was exploited for the first time both as a hydrogen bonding donor and as a supporting electrolyte.
Collapse
Affiliation(s)
- Liyuan Lan
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
9
|
Xu J, Li R, Ma Y, Zhu J, Shen C, Jiang H. Site-selective α-C(sp 3)-H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration. Nat Commun 2024; 15:6791. [PMID: 39117735 PMCID: PMC11310330 DOI: 10.1038/s41467-024-51239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Site-selective C(sp3)-H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here we report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)-H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration, by which a wide array of benzylamine motifs can be incorporated to the medicinally relevant systems in the late-stage installation steps. In contrast to previous efforts, this C-H arylation protocol exhibits specific site-selectivity, proforming predominantly on sterically more-hindered secondary and tertiary α-amino carbon centers, while the C-H functionalization of sterically less-hindered N-methyl group can be effectively circumvented in most cases. Moreover, a diverse range of multi-substituted piperidine derivatives can be obtained with excellent diastereoselectivity. Mechanistic and computational studies demonstrate that the rate-determining step for methylene C-H arylation is the initial H atom abstraction, whereas the radical ipso cyclization step bears the highest energy barrier for N-methyl functionalization. The relatively lower activation free energies for secondary and tertiary α-amino C-H arylation compared with the functionalization of methylic C-H bond lead to the exceptional site-selectivity.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihan Li
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Zhu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Heng Jiang
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Das A, Myers DL, Ganesh V, Greaney MF. Cascade Aryne Aminoarylation for Biaryl Phenol Synthesis. Org Lett 2024; 26:2612-2616. [PMID: 38512156 PMCID: PMC11002935 DOI: 10.1021/acs.orglett.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
We describe a transition metal-free approach to hindered 3-amino-2-aryl phenols through a cascade nucleophilic addition / Smiles-Truce rearrangement of a functionalized Kobayashi aryne precursor. Under anionic conditions, secondary alkyl amines add to the aryne intermediate to set up an aryl transfer from a neighboring sulfonate group. The use of a sulfonate, rather than the more typical sulfonamide, enables access to phenolic biaryl products that are important motifs in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Aniruddha Das
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, West Bengal-721302, India
| | - Danielle L. Myers
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| | - Venkataraman Ganesh
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, West Bengal-721302, India
| | - Michael F. Greaney
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
11
|
Mallick RK, Žabka M, Clayden J. Benzo-fused Nitrogen Heterocycles by Asymmetric Ring Expansion and Stereochemically Retentive Re-contraction of Cyclic Ureas. Angew Chem Int Ed Engl 2024; 63:e202318417. [PMID: 38261257 DOI: 10.1002/anie.202318417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Benzo-fused nitrogen heterocycles are common features of bioactive molecules, and the enantioselective synthesis of their substituted analogues is an important goal. In this paper we demonstrate a practical and mechanistically intriguing approach to the enantioselective synthesis of 1-arylbenzazepines and their analogues. The reaction sequence starts with an asymmetric migratory ring expansion of indoline, tetrahydroquinoline, or tetrahydrobenzazepine ureas on treatment with a chiral lithium amide base. Treatment of the ring-expanded ureas with acid triggers a two-atom ring contraction-an 'azatropic shift' in which one urea nitrogen displaces the other-with almost complete retention of stereochemistry. Aminolysis of the urea products provides enantioenriched 1-aryl-tetrahydrobenzazepine derivatives and their congeners, including an analogue of an intermediate in the synthesis of the drug solifenacin. Deuteration, in situ IR, and DFT studies provide evidence for the mechanisms of the reaction steps.
Collapse
Affiliation(s)
- Rajendra K Mallick
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Matej Žabka
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
12
|
Tian D, Li ZC, Sun ZH, He YP, Xu LP, Wu H. Catalytic Enantioselective Biltz Synthesis. Angew Chem Int Ed Engl 2023; 62:e202313797. [PMID: 37814442 DOI: 10.1002/anie.202313797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The Biltz synthesis establishes straightforward access to 5,5-disubstituted (thio)hydantoins by combining a 1,2-diketone and a (thio)urea. Its appealing features include inherent atom and step economy together with the potential to generate structurally diverse products. However, control of the stereochemistry of this reaction has proven to be a daunting challenge. Herein, we describe the first example of enantioselective catalytic Biltz synthesis which affords more than 40 thiohydantoins with high stereo- and regio-control, irrespective of the symmetry of thiourea structure. A one pot synthesis of corresponding hydantoins is also documented. Remarkably, experimental studies and DFT calculations establish the reaction pathway and origin of stereoselectivity.
Collapse
Affiliation(s)
- Di Tian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Zhuo-Chen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yu-Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
13
|
Sephton T, Large JM, Butterworth S, Greaney MF. Synthesis of Functionalized Pyrrolidinone Scaffolds via Smiles-Truce Cascade. Org Lett 2023; 25:6736-6740. [PMID: 37668613 PMCID: PMC10510726 DOI: 10.1021/acs.orglett.3c02559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Arylsulfonamides have been found to react with cyclopropane diesters under simple base treatment to give α-arylated pyrrolidinones. This one-pot process comprises three steps: nucleophilic ring-opening of the cyclopropane, reaction of the resulting enolate in a Smiles-Truce aryl transfer, and lactam formation. The reaction represents a new, operationally simple approach to biologically active pyrrolidinones and expands Smiles-Truce arylation methods to encompass sp3 electrophilic centers in cascade processes.
Collapse
Affiliation(s)
- Thomas Sephton
- School
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jonathan M. Large
- Accelerator
Building, Open Innovation Campus, LifeArc, Stevenage SG1 2FX, U.K.
| | - Sam Butterworth
- Division
of Pharmacy and Optometry, School of Health Sciences, Manchester Academic
Health Sciences Centre, University of Manchester, Manchester M13 9PL, U.K.
| | | |
Collapse
|
14
|
Swaby C, Taylor A, Greaney MF. An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes. J Org Chem 2023; 88:12821-12825. [PMID: 37589318 PMCID: PMC10476196 DOI: 10.1021/acs.joc.3c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/18/2023]
Abstract
The use of catalysis methods to enable Smiles rearrangement opens up new substrate classes for arylation under mild conditions. Here, we describe an N-heterocyclic carbene (NHC) catalysis system that accesses indole and pyrrole aldehyde substrates in a desulfonylative Smiles process. The reaction proceeds under mild, transition-metal-free conditions and captures acyl anion reactivity for the synthesis of a diverse array of 2-aroyl indoles and pyrroles from readily available sulfonamide starting materials.
Collapse
Affiliation(s)
| | | | - Michael F. Greaney
- Dept. of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
15
|
Fan Z, Jia W. Ambient 1,2-propanediol exposure accelerates the degradation of lipids and amino acids in milk via allosteric effects and affects the utilization of nutrients containing amide bond. Food Res Int 2023; 170:112965. [PMID: 37316053 DOI: 10.1016/j.foodres.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The scandal of detecting 1, 2-propanediol (PL) in milk brought a crisis to the trust of consumers in the dairy industry, and the potential toxicity of PL has aroused the public concern about dietary exposure. A total of 200 pasteurized milk samples were collected from 15 regions, and the quantity of PL ranged between 0 and 0.31 g kg-1. Pseudo-targeted quantitative metabolomics integrated with proteomics demonstrated that PL enhanced the reduction of κ-casein, β-casein, and 107 substances (41 amines and 66 amides) containing amide bonds. Pathway enrichment and topological analysis indicated that PL induced the metabolism of lipids, amino acids, oligosaccharide nucleotides, and alkaloids by accelerating the rate of nucleophilic reaction, and acetylcholinesterase, sarcosine oxidase, and prolyl 4-hydroxylase were determined as the vital enzymes related to the degradation of above nutrients. The results of molecular simulation calculation illustrated that the number of hydrogen bonds between acetylcholinesterase, sarcosine oxidase, and substrate increased to 2 and 3, respectively, while the position of hydrogen bonds between prolyl 4-hydroxylase and proline was shifted, indicating the change of conformation and the enhancement of hydrogen bond force were essential factors for the up-regulation of enzyme activity. This study first revealed the mechanism of deposition and transformation of PL in milk, which contributed to the knowledge of the quality control of milk and provided vital indicators to evaluate the adverse risks of PL in dairy products.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
16
|
Saunthwal RK, Schwarz M, Mallick RK, Terry-Wright W, Clayden J. Enantioselective Intramolecular α-Arylation of Benzylamine Derivatives: Synthesis of a Precursor to Levocetirizine. Angew Chem Int Ed Engl 2023; 62:e202216758. [PMID: 36698284 DOI: 10.1002/anie.202216758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
A practical, transition metal-free method allows the enantioselective synthesis of α,α-diarylmethylamines by asymmetric α-arylation of benzylamines. Enantioselective lithiation of N'-aryl-N-benzyl-N-isopropyl ureas using a chiral lithium amide base generates a benzyllithium that undergoes an unactivated stereospecific intramolecular nucleophilic aromatic substitution to generate an α,α-diarylmethylamine in the form of its urea derivative, in up to >99 % ee. Treatment with acid induces an "azatropic shift" with retention of configuration, the product of which may be hydrolysed to the target amine.
Collapse
Affiliation(s)
- Rakesh K Saunthwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Maria Schwarz
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Rajendra K Mallick
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - William Terry-Wright
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
17
|
Lemmerer M, Zhang H, Fernandes AJ, Fischer T, Mießkes M, Xiao Y, Maulide N. Synthese von α-Arylacrylamiden via Lewis Base vermitteltem Aryl/Wasserstoff-Austausch. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207475. [PMID: 38505003 PMCID: PMC10947125 DOI: 10.1002/ange.202207475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/12/2022]
Abstract
AbstractHierin stellen wir eine neue Methode für die Synthese von α‐Arylacrylamiden vor. Die Reaktion basiert auf der Nutzung polarer S‐zu‐C Arylwanderungen, induziert durch einen Lewis‐basischen Organokatalysator. Im Unterschied zu zuvor publizierten radikalischen Arylwanderungen von Sulfonylacrylamiden, ermöglicht dieser polare Prozess eine darauffolgende Eliminierung, wodurch in Summe ein formaler Aryl/Wasserstoff‐Austausch unter Ausscheidung von SO2 stattfindet. Die vorgestellte Reaktion ist selektiv für elektronenarme aromatische Gruppen, während eine Vielfalt von Substituenten am Stickstoff und an der β‐Position toleriert werden, und erzeugt nützliche Bausteine für Folgereaktionen wie Zykloadditionen und Zyklisierungen. Der Reaktionsmechanismus wurde mithilfe quantenchemischer Berechnungen erforscht, die die unerwartete Rolle der Lewis Base in mehreren Schlüsselschritten darlegten.
Collapse
Affiliation(s)
- Miran Lemmerer
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
| | - Haoqi Zhang
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz1090WienÖsterreich
| | - Anthony J. Fernandes
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz1090WienÖsterreich
| | | | - Marianne Mießkes
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
| | - Yi Xiao
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090WienÖsterreich
| | - Nuno Maulide
- Fakultät Chemie, Institut für Organische ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz1090WienÖsterreich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090WienÖsterreich
| |
Collapse
|
18
|
Lemmerer M, Zhang H, Fernandes AJ, Fischer T, Mießkes M, Xiao Y, Maulide N. Synthesis of α-Aryl Acrylamides via Lewis-Base-Mediated Aryl/Hydrogen Exchange. Angew Chem Int Ed Engl 2022; 61:e202207475. [PMID: 35881564 PMCID: PMC9804524 DOI: 10.1002/anie.202207475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/05/2023]
Abstract
Herein we report a method for the synthesis of α-aryl acrylamides leveraging polar S-to-C aryl migrations induced by a Lewis basic organocatalyst. In contrast to previously reported radical aryl migrations of sulfonyl acrylimides, this polar process enables subsequent elimination, ultimately leading to a formal aryl/hydrogen exchange including SO2 extrusion. This reaction is selective for electron-deficient aromatic groups, while tolerating a variety of substituents on nitrogen and in the β-position, and it delivers useful building blocks for further transformations, including cycloaddition and cyclisation reactions. The mechanism was investigated in detail using quantum chemical calculations, which unexpectedly revealed the Lewis base to be involved in several decisive steps.
Collapse
Affiliation(s)
- Miran Lemmerer
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Anthony J. Fernandes
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | | | - Marianne Mießkes
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Yi Xiao
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 14, AKH BT 25.31090ViennaAustria
| |
Collapse
|