1
|
Zhang J, Xiao T, Liu Z, Yin Y, Li C, Xu F, Mai Y. Area-Controllable Nanoplatelets from Rapid Photocontrolled Living Crystallization-Driven Self-Assembly of an Alternating Copolymer. J Am Chem Soc 2025. [PMID: 40415387 DOI: 10.1021/jacs.5c04537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Photocontrolled living self-assembly has attracted considerable interest due to its noninvasive, remote control, and real-time features; however, it has remained much less explored compared to other stimuli-responsive self-assembly systems. Here, a novel photocontrolled living crystallization-driven self-assembly (P-CDSA) system was constructed by employing an alternating copolymer, poly((hexylthienyl stiff-stilbene)-alt-poly(ethylene glycol)) containing photosensitive stiff-stilbene derivative, as the precursor. The photoinduced trans-to-cis isomerization of the stiff-stilbene derivative segments could occur quickly upon 365 nm light irradiation, leading to a rapid P-CDSA process producing size-controllable nanoplatelets within 2 min at room temperature. Taking advantage of the repetitive characteristic of alternating copolymers, the nanoplatelet morphology was independent of the molecular weight (MW) and its distribution (Đ) of the copolymer. The areas of the nanoplatelets were precisely controlled by adjusting the unimer-to-seed mass ratio, following a linear relationship. Additionally, the lengths of the major and minor axes followed a sublinear growth trend, enabling tailored nanoplatelet dimensions. The area could also be programmed by sequential light on/off switching, showing a linear dependence on light irradiation time. This study demonstrates the first example of photocontrolled two-dimensional CDSA and opens a new avenue for controlling over the area of 2D architectures.
Collapse
Affiliation(s)
- Jiacheng Zhang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianyu Xiao
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilin Liu
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Yin
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Li
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fugui Xu
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyong Mai
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Li C, Ekanayake AB, Chu QR, Swenson DC, Tivanski AV, MacGillivray LR. Light-Induced Disruption of 1D Wire-Like Arrays of Monoatomic Ag(I) Ions: Single-Crystal Reaction with Crystal Softening. Angew Chem Int Ed Engl 2025:e202419875. [PMID: 40268682 DOI: 10.1002/anie.202419875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The exploitation of noncovalent bonding in the solid state is attractive to generate one-dimensional (1D) wire-like assemblies of metals and uncover dynamic and physical properties of such intriguing structures. Herein, we describe a metal-organic crystal based on Ag(I) ions that assemble to be organized into 1D wire-like assemblies maintained by argentophilic interactions. UV-light irradiation of the crystal composed of the 1D structures results in a single-crystal-to-single-crystal (SCSC) photodimerization that transforms the 1D periodic metal arrays to isolated metal dimers. The structural reconfiguration creates small voids in the crystal and the resulting solids exhibit a substantial increase in softness up to 60%.
Collapse
Affiliation(s)
- Changan Li
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York, 10027, USA
| | | | - Qianli R Chu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Dale C Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
3
|
Lotocki V, Battaglia AM, Moon N, Titi HM, Seferos DS. Conjugated core-shell bottlebrush polymers that exhibit crystallization-driven self-assembly. Chem Sci 2025; 16:920-932. [PMID: 39660296 PMCID: PMC11626758 DOI: 10.1039/d4sc06868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Bottlebrush polymers are complex architectures with densely grafted polymer side chains along polymeric backbones. The dense and conformationally extended chains in bottlebrush polymers give rise to unique properties, including low chain entanglement, low critical aggregation concentrations, and elastomeric properties in the bulk phase. Conjugated polymers have garnered attention as lightweight, processible, and flexible semi-conducting materials. They are promising candidates in electronic devices and sensors, but their optoelectronic properties depend on adequate polymer ordering, π-π interactions, and crystallization. Crystallization-driven self-assembly of conjugated polymers has become a prominent method to optimize properties including band energies, redox potentials, and exciton diffusion and transport. Much progress has been made in controlled block copolymer self-assembly, but despite their promising properties, reports of conjugated bottlebrushes have been limited, and their self-assembly is relatively unexplored. For the first time, we report the synthesis of conjugated core-shell bottlebrush polymers. These materials contain poly(3-hexylthiophene) (P3HT) and poly(ethylene glycol) (PEG) in either core or shell position. We demonstrate that the use of P3HT as a crystallizable conjugated polymer and PEG as a colloidally stabilizing and disaggregating block facilitates their self-assembly into a number of unique crystalline morphologies with longer conjugation lengths and lower exciton bandwidths relative to analogous diblock copolymers. These include intramolecularly self-assembled segregated bottlebrush polymers, short nanofibers formed by end-on-end stacking of bottlebrush molecules, extremely long >20 μm nanofibers formed exclusively by end-on-end stacking, and >15 μm nanoribbons formed from both end-on-end and side-by-side stacking of bottlebrush polymers.
Collapse
Affiliation(s)
- Victor Lotocki
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alicia M Battaglia
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Nahye Moon
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
4
|
Dan X, Li S, Chen H, Xue P, Liu B, Ju Y, Lei L, Li Y, Fan X. Tailoring biomaterials for skin anti-aging. Mater Today Bio 2024; 28:101210. [PMID: 39285945 PMCID: PMC11402947 DOI: 10.1016/j.mtbio.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging is the phenomenon of degenerative changes in the structure and function of skin tissues over time and is manifested by a gradual loss of skin elasticity and firmness, an increased number of wrinkles, and hyperpigmentation. Skin anti-aging refers to a reduction in the skin aging phenomenon through medical cosmetic technologies. In recent years, new biomaterials have been continuously developed for improving the appearance of the skin through mechanical tissue filling, regulating collagen synthesis and degradation, inhibiting pigmentation, and repairing the skin barrier. This review summarizes the mechanisms associated with skin aging, describes the biomaterials that are commonly used in medical aesthetics and their possible modes of action, and discusses the application strategies of biomaterials in this area. Moreover, the synergistic effects of such biomaterials and other active ingredients, such as stem cells, exosomes, growth factors, and antioxidants, on tissue regeneration and anti-aging are evaluated. Finally, the possible challenges and development prospects of biomaterials in the field of anti-aging are discussed, and novel ideas for future innovations in this area are summarized.
Collapse
Affiliation(s)
- Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Xue
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Qi R, Huang X, Yang T, Luo P, Qi W, Zhang Y, Yuan H, Li H, Wang J, Liu B, Xie S. Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides. Molecules 2024; 29:4610. [PMID: 39407540 PMCID: PMC11477776 DOI: 10.3390/molecules29194610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Tailoring the morphologies and optical properties of the 2D and hierarchical nanostructures self-assembled by the π-conjugated molecules is both interesting and challenging. Herein, a series of 2D ribbon-like nanostructures with single or multiple H-aggregated perylene bisimides (PBI) monolayer and hierarchical nanostructures (including straw-like, dumbbell-shaped, and rod-like nanostructures) are fabricated by solution self-assembly of three chiral alanine-decorated PBI. The influence of the solvent's dissolving capacity, the chirality of alanine, and the preparation methods on the morphologies and optical properties of the nanostructures were extensively studied. It was observed that the hierarchical nanostructures are formed by the reorganization of the 2D ribbon-like nanostructures. The size of the 2D ribbon-like nanostructures and the amount of the hierarchical nanostructures increase with the decrease in the solvent's dissolving capacity. The small chiral alanine moiety is unable to induce chirality in the nanostructures, owing to its low steric hindrance and the dominant strong π-π stacking interaction of the PBI skeleton. A weaker π-π stacking interaction and better H-aggregated arrangement of the PBI skeleton could reduce the low-wavelength fluorescence intensity. The process of heating, cooling, and aging promotes the formation of H-aggregation in the PBI skeleton. The region of spectral overlap of the PBI solutions increases with the decrease in the dissolving capacity of the solvent and the steric hindrance of the chiral alanine. This study supplies a view to tailor the morphologies and optical properties of the nanostructures, which could be used as sensors and photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Songzhi Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (R.Q.); (X.H.); (T.Y.); (P.L.); (W.Q.); (Y.Z.); (H.Y.); (H.L.); (J.W.); (B.L.)
| |
Collapse
|
6
|
Kumari P, Hajduk B, Jarka P, Bednarski H, Janeczek H, Łapkowski M, Waśkiewicz S. A Supramolecular Approach to Enhance the Optoelectronic Properties of P3HT-b-PEG Block Copolymer for Organic Field-Effect Transistors. ACS OMEGA 2024; 9:39023-39032. [PMID: 39310193 PMCID: PMC11411656 DOI: 10.1021/acsomega.4c05648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
This study investigates a supramolecular approach to elucidate the interaction between an organic semiconducting molecule, specifically butyric acid-functionalized perylene diimide, and a block copolymer comprising poly-3-hexyl thiophene-b-polyethylene glycol. This interaction results in the formation of a precisely structured nanoarchitecture within the supramolecular block copolymer, driven by the ionic interplay between the block copolymer and small organic molecules. The optical properties of the synthesized supramolecular block copolymer were characterized by using ellipsometry. Additionally, further characterization employing atomic force microscopy, differential scanning calorimetry, and X-ray diffraction provided detailed insights into the crystallinity and morphology of the nanostructure. The characterization data showed that this approach significantly influenced the tuning of morphology, crystallinity, and optical and electronic properties of the resulting nanostructure. The demonstrated methodology holds considerable promise as a strategic tool for broadening the spectrum of attainable nanomorphologies in semiconducting polymers, particularly for applications in electronics or photovoltaics.
Collapse
Affiliation(s)
- Pallavi Kumari
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, 34 Marie Curie Skłodowska Str., Zabrze 41−819, Poland
| | - Barbara Hajduk
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, 34 Marie Curie Skłodowska Str., Zabrze 41−819, Poland
| | - Paweł Jarka
- Department
of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Str., Gliwice 41−100, Poland
| | - Henryk Bednarski
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, 34 Marie Curie Skłodowska Str., Zabrze 41−819, Poland
| | - Henryk Janeczek
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, 34 Marie Curie Skłodowska Str., Zabrze 41−819, Poland
| | - Mieczysław Łapkowski
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, 34 Marie Curie Skłodowska Str., Zabrze 41−819, Poland
- Department
of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44−100, Poland
| | - Sylwia Waśkiewicz
- Department
of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44−100, Poland
| |
Collapse
|
7
|
Huang F, Ma J, Nie J, Xu B, Huang X, Lu G, Winnik MA, Feng C. A Versatile Strategy toward Donor-Acceptor Nanofibers with Tunable Length/Composition and Enhanced Photocatalytic Activity. J Am Chem Soc 2024; 146:25137-25150. [PMID: 39207218 DOI: 10.1021/jacs.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Living crystallization-driven self-assembly (CDSA) has emerged as an efficient strategy to generate nanofibers of π-conjugated polymers (CPNFs) in a controlled fashion. However, reports of donor-acceptor (D-A) heterojunction CPNFs are extremely rare. The preparation of these materials remains a challenge due to the lack of rational design guidelines for the D-A π-conjugated units. Herein, we report a versatile CDSA strategy based upon carefully designed D-A-co-oligomers in which electron-deficient benzothiadiazole (BT) or dibenzo[b,d]thiophene 5,5-dioxide (FSO) units are attached to the two ends of an oligo(p-phenylene ethynylene) heptamer [BT-OPE7-BT, FSO-OPE7-FSO]. This arrangement with the electron-deficient groups at the two ends of the oligomer enhances the stacking interaction of the A-D-A π-conjugated structure. In contrast, D-A-D structures with a single BT in the middle of a string of OPE units disrupt the packing. We employed oligomers with a terminal alkyne to synthesize diblock copolymers BT-OPE7-BT-b-P2VP and BT-OPE7-BT-b-PNIPAM (P2VP = poly(2-vinylpyridine), PNIPAM = poly(N-isopropylacrylamide)) and FSO-OPE7-FSO-b-P2VP and FSO-OPE7-FSO-b-PNIPAM. CDSA experiments with these copolymers in ethanol were able to generate CPNFs of controlled length by both self-seeding and seeded growth as well as block comicelles with precisely tunable length and composition. Furthermore, the D-A CPNFs with a BT-OPE7-BT-based core demonstrate photocatalytic activity for the photooxidation of sulfide to sulfoxide and benzylamine to N-benzylidenebenzylamine. Given the scope of the oligomer compositions examined and the range of structures formed, we believe that the living CDSA strategy with D-A-based co-oligomers opens future opportunities for the creation of D-A CPNFs with programmable architectures as well as diverse functionalities and applications.
Collapse
Affiliation(s)
- Fengfeng Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Junyu Ma
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jiucheng Nie
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Guolin Lu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
8
|
Pei HW, Zhang J, Sun ZY. Deposition patterns formed by the evaporation of linear diblock copolymer solution nanodroplets on solid surfaces. J Chem Phys 2024; 161:014711. [PMID: 38958161 DOI: 10.1063/5.0216966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The evaporation-induced deposition pattern of the linear diblock copolymer solution has attracted attention in recent years. Given its critical applications, we study deposition patterns of the linear diblock copolymer solution nanodroplet on a solid surface (the wall) by molecular dynamics simulations. This study focuses on the influence of the nonbonded interaction strength, including the interaction between the wall and polymer blocks (ɛAW and ɛBW), the interaction between the solvent and the wall (ɛSW), and the interaction between polymer blocks (ɛAB). Conditions leading to diverse deposition patterns are explored, including the coffee-ring and the volcano-like structures. The formation of the coffee-ring structure is attributed to receding interfaces, the heterogeneity inside the droplet, and the self-assembly of polymer chains. This study contributes to the establishment of guidelines for designing deposition patterns of the linear diblock copolymer solution nanodroplet, which facilitates practical applications such as inkjet printing.
Collapse
Affiliation(s)
- Han-Wen Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Lee DY, Choi DE, Ahn Y, Kye H, Kim MS, Kim BG. Sequential Cascade Doping of Conjugated-Polymer-Wrapped Carbon Nanotubes for Highly Electrically Conductive Platforms. Polymers (Basel) 2024; 16:1884. [PMID: 39000739 PMCID: PMC11244060 DOI: 10.3390/polym16131884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
To explore a highly conductive flexible platform, this study develops PIDF-BT@SWCNT by wrapping single-walled carbon nanotubes (SWCNTs) with a conjugated polymer, PIDF-BT, known for its effective doping properties. By evaluating the doping behaviors of various dopants on PIDF-BT, appropriate dopant combinations for cascade doping are selected to improve the doping efficiency of PIDF-BT@SWCNT. Specifically, using F4TCNQ or F6TCNNQ as the first dopant, followed by AuCl3 as the second dopant, demonstrates remarkable doping efficiency, surpassing that of the individual dopants and yielding an exceptional electrical conductivity exceeding 6000 S/cm. Characterization using X-ray photoelectron spectroscopy and Raman spectroscopy elucidates the doping mechanism, revealing an increase in the proportion of electron-donating atoms and the ratio of quinoid structures upon F4TCNQ/AuCl3 cascade doping. These findings offer insights into optimizing dopant combinations for cascade doping, showcasing its advantages in enhancing doping efficiency and resulting electrical conductivity compared with single dopant processes.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Materials Science and Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea;
| | - Da Eun Choi
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Yejin Ahn
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Hyojin Kye
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Min Seon Kim
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| | - Bong-Gi Kim
- Department of Materials Science and Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea;
- Department of Organic and Nano System Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (D.E.C.); (Y.A.); (H.K.); (M.S.K.)
| |
Collapse
|
10
|
Toujani C, Padilla LA, Alhraki N, Hur SM, Ramírez-Hernández A. Self-assembly of rod-coil-rod block copolymers in a coil-selective solvent: coarse-grained simulation results. SOFT MATTER 2024; 20:3131-3142. [PMID: 38497125 DOI: 10.1039/d4sm00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The solution self-assembly of amphiphilic polymers provides a versatile approach to design novel nanostructured materials. Multiblock polymers, particularly those composed of liquid crystalline and coil blocks, are of significant interest due to the potential display of nematic ordering in liquid crystalline domains, offering intriguing optical and mechanical properties. In this study, dissipative particle dynamics is used to investigate the solution self-assembly of rod-coil-rod copolymers in a coil-selective solvent. Extensive molecular simulations were conducted to elucidate the impact of polymer composition, concentration and flexibility on the self-assembly behavior. A quantitative analysis was performed to investigate how polymer conformations varied with changes in composition, concentration, and rigidity. Simulation results show that, at small rod compositions, rod-coil-rod polymers self-assemble into micelles at low concentrations, transitioning to network formation as concentration increases. An increase in rod composition leads to the formation of larger aggregates, resulting in cylindrical micelles and membranes. The results reported here also offer insights into the role of flexibility in shaping the self-assembly behavior of rod-coil-rod triblocks in selective solvents, thus, contributing to a comprehensive understanding of the factors governing the formation of diverse structures in the solution self-assembly of triblock copolymers.
Collapse
Affiliation(s)
- Chiraz Toujani
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Luis A Padilla
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Nour Alhraki
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA.
| |
Collapse
|
11
|
Yang Y, Lin E, Wang S, Wang T, Wang Z, Zhang Z. Single-Crystal One-Dimensional Porous Ladder Covalent Polymers. J Am Chem Soc 2024; 146:782-790. [PMID: 38165084 DOI: 10.1021/jacs.3c10812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The synthesis of single-crystal, one-dimensional (1D) polymers is of great importance but a formidable challenge. Herein, we report the synthesis of single-crystal 1D ladder polymers in solution by dynamic covalent chemistry. The three-dimensional electron diffraction technique was used to rigorously solve the structure of the crystalline polymers, unveiling that each polymer chain is connected by double covalent bridges and all polymer chains are packed in a staggered and interlaced manner by π-π stacking and hydrogen bonding interactions, making the crystalline polymers highly robust in both thermal and chemical stability. The synthesized single-crystal polymers possess permanent micropores and can efficiently remove CO2 from the C2H2/CO2 mixture to obtain high-purity C2H2, validated by dynamic breakthrough experiments. This work demonstrates the first example of constructing single-crystal 1D porous ladder polymers with double covalent bridges in solution for efficient C2H2/CO2 separation.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - En Lin
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sa Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Riaz U, Ashraf SM. Dye Modified Phenylenediamine Oligomers: Theoretical Studies on Drug Binding for Their Potential Application in Drug Sensors. ACS PHYSICAL CHEMISTRY AU 2023; 3:521-531. [PMID: 38034039 PMCID: PMC10683475 DOI: 10.1021/acsphyschemau.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 12/02/2023]
Abstract
The present work reports, for the first time, synthesis of dye incorporated o-phenylenediamine (OBB) with a view to obtain a conjugated oligomer with enhanced functionality. The structure was confirmed by IR studies, while the electronic transitions were confirmed by UV visible studies. The dye modified oligomer showed one order higher fluorescence intensity than the pristine Bismarck Brown (BB) dye. Confocal imaging showed red emission which could be utilized in near infra-red imaging. Density functional theory (DFT) studies were carried out to predict the theoretical properties of the oligomers. The energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital orbital were computed to explore how the HOMO energies of the reactants initiated the electronic interactions between them. The interaction energies were correlated to conjugation/hyper conjugation stabilization energies of the natural bond orbitals (NBO) via the DFT method using the B3LYP functional with the 6-311G(d) basis set on Gaussian 09 software. Drug binding was evaluated through simulation of interaction energy, (ΔEA-x) with drugs such as captopril, propranolol, thiazide, and fentanyl. The results predicted that the oligomer could be developed into a fentanyl drug sensor.
Collapse
Affiliation(s)
- Ufana Riaz
- Department
of Chemistry and Biochemistry, North Carolina
Central University, Durham, North Carolina 27707, United
States
- Materials
Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Marghoob Ashraf
- Materials
Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
13
|
Kim GH, Kim M, Hyun JK, Park SJ. Directional Self-Assembly of Nanoparticles Coated with Thermoresponsive Block Copolymers and Charged Small Molecules. ACS Macro Lett 2023:986-992. [PMID: 37399507 DOI: 10.1021/acsmacrolett.3c00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Herein, we report the directional stimuli-responsive self-assembly of gold nanoparticles (AuNPs) coated with a thermoresponsive block copolymer (BCP), poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and charged small molecules. AuNPs modified with PEG-b-PNIPAM possessing a AuNP/PNIPAM/PEG core/active/shell structure undergo temperature-induced self-assembly into one-dimensional (1D) or two-dimensional (2D) structures in salt solutions, with the morphology varying with the ionic strength of the medium. Salt-free self-assembly is also realized by modulating the surface charge by the codeposition of positively charged small molecules; 1D or 2D assemblies are formed depending on the ratio between the small molecule and PEG-b-PNIPAM, consistent with the trend observed with the bulk salt concentration. A series of charge-controlled self-assembly at various conditions revealed that the temperature-induced BCP-mediated self-assembly reported here provides an effective means for on-demand directional self-assembly of nanoparticles (NPs) with controlled morphology, interparticle distance, and optical properties, and the fixation of high-temperature structures.
Collapse
Affiliation(s)
- Ga-Hyun Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Minji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jerome K Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Bui TT, Nguyen TH, Tran HL, Tran CD, Le DT, Dao DN, Nguyen TPL, Nguyen LT, Nguyen LTT, Nguyen TQ, Cu ST, Hoang MH, Yokozawa T, Nguyen HT. Synthesis of rod–coil conjugated diblock copolymers, poly(3-hexylthiophene)-block-poly(2-(4,6-dichlorotriazin-2-yl]oxy)ethyl methacrylate) and click chemistry. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
15
|
Zou H, Liu W, Wang C, Zhou L, Liu N, Wu ZQ. Polyfluorene- block-poly(phenyl isocyanide) Copolymers: One-Pot Synthesis, Helical Assembly, and Circularly Polarized Luminescence. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wei Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin Province 130021, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province 130012, China
| |
Collapse
|
16
|
Chen S, Zheng H, Liu X, Peng J. Tailoring Co-crystallization over Microphase Separation in Conjugated Block Copolymers via Rational Film Processing for Field-Effect Transistors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Shuwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
17
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
18
|
Ma S, Hou Y, Hao J, Lin C, Zhao J, Sui X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers (Basel) 2022; 14:polym14214568. [PMID: 36365562 PMCID: PMC9655174 DOI: 10.3390/polym14214568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of “energy enhancers” in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.
Collapse
|