1
|
Wu L, He JB, Wei W, Pan HX, Wang X, Yang S, Liang Y, Tang GL, Zhou J. Three distinct strategies lead to programmable aliphatic C-H oxidation in bicyclomycin biosynthesis. Nat Commun 2025; 16:4651. [PMID: 40389404 PMCID: PMC12089406 DOI: 10.1038/s41467-025-58997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/21/2025] Open
Abstract
The C-H bond functionalization has been widely used in chemical synthesis over the past decade. However, regio- and stereoselectivity still remain a significant challenge, especially for inert aliphatic C-H bonds. Here we report the mechanism of three Fe(II)/α-ketoglutarate-dependent dioxygenases in bicyclomycin synthesis, which depicts the natural tactic to sequentially hydroxylate specific C-H bonds of similar substrates (cyclodipeptides). Molecular basis by crystallographic studies, computational simulations, and site-directed mutagenesis reveals the exquisite arrangement of three enzymes using mutually orthogonal strategies to realize three different regio-selectivities. Moreover, this programmable selective hydroxylation can be extended to other cyclodipeptides. This evidence not only provides a naturally occurring showcase corresponding to the widely used methods in chemical catalysis but also expands the toolbox of biocatalysts to address the regioselective functionalization of C-H bonds.
Collapse
Affiliation(s)
- Lian Wu
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China
| | - Jun-Bin He
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hai-Xue Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China.
| | - Yong Liang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China.
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China.
| | - Jiahai Zhou
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Dong Y, Ye H, Wang B, Ma D, Kang X, Liang W, Cai X, Liu S, Jiang C, Du W, Zhang H, Sun H, Xi Z, Yi L. Intramolecular Thiol-Promoted Decomposition of Cysteine Ester (ITPDC): A General Platform for Controllable Release of Reactive Sulfur Species. Angew Chem Int Ed Engl 2025:e202422087. [PMID: 40241606 DOI: 10.1002/anie.202422087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/09/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Endogenously generated reactive sulfur species (RSS) play critical roles in various physiological processes. RSS donors can enhance our understanding of RSS chemical biology and open new avenues for treating RSS-associated diseases. Nevertheless, general strategies for the controllable release of distinct RSS remain lacking. Herein, we present the first general platform for controllable release of RSS with sulfur oxidation states ranging from -2 to +4, based on the intramolecular thiol-promoted decomposition of cysteine ester (ITPDC). We first rationally designed ITPDC-based hydrogen sulfide (H2S) donors that avoid electrophilic byproducts and exhibit high H2S release efficiencies (>50%). Mechanistic investigations and density functional theory calculations elucidated the detailed pathways of pH-controllable H2S release from ITPDC, and computational studies also predicted other H2S-related RSS release from the ITPDC-based motifs. Importantly, we developed a series of ITPDC-based donors capable of releasing various RSS, including persulfide, hydrogen persulfide, sulfenic acid, sulfinic acid, and sulfur dioxide (SO2). Moreover, fluorescent imaging demonstrated the successful cellular delivery of H2S, persulfide, and SO2 from these donors, and the ITPDC-based motif was employed to create a light-triggered donor. We anticipate that these innovative chemistries will provide valuable tools for studying sulfur biology and for developing new RSS donors and bio-orthogonal cleavage techniques.
Collapse
Affiliation(s)
- Yalun Dong
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Baifan Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China
| | - Dejun Ma
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenfang Liang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xuekang Cai
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Shanshan Liu
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenhao Du
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, P.R. China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P.R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
3
|
Yadav S, Lyons RS, Readi-Brown Z, Siegler MA, Goldberg DP. Influence of the second coordination sphere on O 2 activation by a nonheme iron(II) thiolate complex. J Inorg Biochem 2025; 264:112776. [PMID: 39644805 DOI: 10.1016/j.jinorgbio.2024.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAMe2S-) and its nonheme iron complex, FeII(BPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -20 °C generates a high-spin iron(III)-hydroxide complex, [FeIII(OH)(BPAMe2S)(Br)] (2), that was characterized by UV-vis, 57Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O2 at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O2 does not yield a stabilized Fe/O2 intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the FeIII(O2-•) intermediate with the BNPAMe2S- ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O2 activation by the nonheme iron center.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Robert S Lyons
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Zoe Readi-Brown
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States.
| |
Collapse
|
4
|
Devadas S, Thomas MG, Rifayee SBJS, Varada B, White W, Sommer E, Campbell K, Schofield CJ, Christov CZ. Origins of Catalysis in Non-Heme Fe(II)/2-Oxoglutarate-Dependent Histone Lysine Demethylase KDM4A with Differently Methylated Histone H3 Peptides. Chemistry 2025; 31:e202403989. [PMID: 39487094 DOI: 10.1002/chem.202403989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Histone lysine demethylase 4 A (KDM4A), a non-heme Fe(II)/2-oxoglutarate (2OG) dependent oxygenase that catalyzes the demethylation of tri-methylated lysine residues at the 9, 27, and 36 positions of histone H3 (H3 K9me3, H3 K27me3, and H3 K36me3). These methylated residues show contrasting transcriptional roles; therefore, understanding KDM4A's catalytic mechanisms with these substrates is essential to explain the factors that control the different sequence-dependent demethylations. In this study, we use molecular dynamics (MD)-based combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate determinants of KDM4A catalysis with H3 K9me3, H3 K27me3 and H3 K36me3 substrates. In KDM4A-H3(5-14)K9me3 and KDM4A-H3(23-32)K27me3 ferryl complexes, the O-H distance positively correlates with the activation barrier of the rate-limiting step, however in the KDM4A-H3(32-41)K36me3, no direct one-to-one relationship was found implying that the synergistic effects between the geometric parameters, second sphere interactions and the intrinsic electric field contribute for the effective catalysis for this substrate. The intrinsic electric field along the Fe-O bond changes between the three complexes and shows a positive correlation with the HAT activation barrier, suggesting that modulating electric field can be used for fine engineering KDM catalysis with a specific substrate. The results reveal how KDM4A uses a combination of strategies to enable near equally efficient demethylation of different H3Kme3 residues.
Collapse
Affiliation(s)
- Sudheesh Devadas
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | - Midhun George Thomas
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | | | - Bhargav Varada
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | - Walter White
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | - Ethan Sommer
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, United States
| | - Kylin Campbell
- Department of Biological Sciences, Michigan Technological University, Houghton, MI-49931, United States
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| |
Collapse
|
5
|
Fuentes-Terrón A, Latter R, Madden S, Manrique-Gil I, Estrada J, Arteaga N, Sánchez-Vicente I, Lorenzo O, Flashman E. Destined for destruction: The role of methionine aminopeptidases and plant cysteine oxidases in N-degron formation. PLANT PHYSIOLOGY 2024; 197:kiae667. [PMID: 39875105 PMCID: PMC11773813 DOI: 10.1093/plphys/kiae667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions. Modification of their N-termini is under enzymatic control by Met Aminopeptidases (MetAPs) and Plant Cysteine Oxidases (PCOs); therefore, the substrate-binding requirements and catalytic effectiveness of these enzymes are important for defining which Met-Cys-initiating proteins are degraded. Physiological conditions can also impact the activity of these enzymes, and the well-characterized oxygen sensitivity of the PCOs ensures target proteins are stabilized in hypoxia. In this review we compile the functional and structural properties of MetAPs and PCOs, including their interactions with substrates. We also consider the evolution of MetAPs and PCOs through the plant kingdom to highlight their important role in controlling the initial steps of this branch of the N-degron pathway.
Collapse
Affiliation(s)
- Andrea Fuentes-Terrón
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Samuel Madden
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Isabel Manrique-Gil
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Jessenia Estrada
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Noelia Arteaga
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Emily Flashman
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
6
|
Patel K, Jiramongkol Y, Norman A, Maxwell JWC, Mohanty B, Payne RJ, Cook KM, White MD. The enzymatic oxygen sensor cysteamine dioxygenase binds its protein substrates through their N-termini. J Biol Chem 2024; 300:107653. [PMID: 39122008 PMCID: PMC11406360 DOI: 10.1016/j.jbc.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The non-heme iron-dependent dioxygenase 2-aminoethanethiol (aka cysteamine) dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyzes O2-dependent Nt-cys sulfinylation, which promotes proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signaling (RGS) 4 and 5, and the proinflammatory cytokine interleukin-32, all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O2-dependent manner. However, the role of individual chemical groups, active site metal, amino acid composition, and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and interleukin-32. We demonstrate, using surface plasmon response and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through 1H-15N heteronuclear single quantum coherence nuclear magnetic resonance titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.
Collapse
Affiliation(s)
- Karishma Patel
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Yannasittha Jiramongkol
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Biswaranjan Mohanty
- Sydney Analytical Core Research Facility, The University of Sydney, Camperdown, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark D White
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Solomon EI, Gipson RR. Spectroscopic definition of ferrous active sites in non-heme iron enzymes. Methods Enzymol 2024; 703:29-49. [PMID: 39261000 PMCID: PMC11391101 DOI: 10.1016/bs.mie.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Non-heme iron enzymes play key roles in antibiotic, neurotransmitter, and natural product biosynthesis, DNA repair, hypoxia regulation, and disease states. These enzymes had been refractory to traditional bioinorganic spectroscopic methods. Thus, we developed variable-temperature variable-field magnetic circular dichroism (VTVH MCD) spectroscopy to experimentally define the excited and ground ligand field states of non-heme ferrous enzymes (Solomon et al., 1995). This method provides detailed geometric and electronic structure insight and thus enables a molecular level understanding of catalytic mechanisms. Application of this method across the five classes of non-heme ferrous enzymes has defined that a general mechanistic strategy is utilized where O2 activation is controlled to occur only in the presence of all cosubstrates.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Acceleration Laboratory, Stanford University, Menlo Park, CA, United States.
| | - Robert R Gipson
- Department of Chemistry, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Bennett ZD, Brunold TC. Non-standard amino acid incorporation into thiol dioxygenases. Methods Enzymol 2024; 703:121-145. [PMID: 39260993 PMCID: PMC11391102 DOI: 10.1016/bs.mie.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Thiol dioxygenases (TDOs) are non‑heme Fe(II)‑dependent enzymes that catalyze the O2-dependent oxidation of thiol substrates to their corresponding sulfinic acids. Six classes of TDOs have thus far been identified and two, cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), are found in eukaryotes. All TDOs belong to the cupin superfamily of enzymes, which share a common β‑barrel fold and two cupin motifs: G(X)5HXH(X)3-6E(X)6G and G(X)5-7PXG(X)2H(X)3N. Crystal structures of TDOs revealed that these enzymes contain a relatively rare, neutral 3‑His iron‑binding facial triad. Despite this shared metal-binding site, TDOs vary greatly in their secondary coordination spheres. Site‑directed mutagenesis has been used extensively to explore the impact of changes in secondary sphere residues on substrate specificity and enzymatic efficiency. This chapter summarizes site-directed mutagenesis studies of eukaryotic TDOs, focusing on the tools and practicality of non‑standard amino acid incorporation.
Collapse
Affiliation(s)
- Zachary D Bennett
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
9
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Ekanger LA, Shah RK, Porowski ME, Ziolkowski Z, Calello A. Spectroscopic, electrochemical, and kinetic trends in Fe(III)-thiolate disproportionation near physiologic pH. J Biol Inorg Chem 2024; 29:291-301. [PMID: 38722396 PMCID: PMC11111527 DOI: 10.1007/s00775-024-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/01/2024] [Indexed: 05/24/2024]
Abstract
In addition to its primary oxygen-atom-transfer function, cysteamine dioxygenase (ADO) exhibits a relatively understudied anaerobic disproportionation reaction (ADO-Fe(III)-SR → ADO-Fe(II) + ½ RSSR) with its native substrates. Inspired by ADO disproportionation reactivity, we employ [Fe(tacn)Cl3] (tacn = 1,4,7-triazacyclononane) as a precursor for generating Fe(III)-thiolate model complexes in buffered aqueous media. A series of Fe(III)-thiolate model complexes are generated in situ using aqueous [Fe(tacn)Cl3] and thiol-containing ligands cysteamine, penicillamine, mercaptopropionate, cysteine, cysteine methyl ester, N-acetylcysteine, and N-acetylcysteine methyl ester. We observe trends in UV-Vis and electron paramagnetic resonance (EPR) spectra, disproportionation rate constants, and cathodic peak potentials as a function of thiol ligand. These trends will be useful in rationalizing substrate-dependent Fe(III)-thiolate disproportionation reactions in metalloenzymes.
Collapse
Affiliation(s)
- Levi A Ekanger
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | - Ruhi K Shah
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Matthew E Porowski
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Zach Ziolkowski
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Alana Calello
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| |
Collapse
|
11
|
Pierce BS, Schmittou AN, York NJ, Madigan RP, Nino PF, Foss FW, Lockart MM. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism. J Biol Chem 2024; 300:105777. [PMID: 38395308 PMCID: PMC10966181 DOI: 10.1016/j.jbc.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| | - Allison N Schmittou
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan P Madigan
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paula F Nino
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, Homewood, Alabama, USA.
| |
Collapse
|
12
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 PMCID: PMC11318076 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
14
|
York NJ, Lockart MM, Schmittou AN, Pierce BS. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site. J Biol Inorg Chem 2023; 28:285-299. [PMID: 36809458 PMCID: PMC10075186 DOI: 10.1007/s00775-023-01990-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
Thiol dioxygenases are a subset of non-heme mononuclear iron oxygenases that catalyze the O2-dependent oxidation of thiol-bearing substrates to yield sulfinic acid products. Cysteine dioxygenase (CDO) and 3-mercaptopropionic acid (3MPA) dioxygenase (MDO) are the most extensively characterized members of this enzyme family. As with many non-heme mononuclear iron oxidase/oxygenases, CDO and MDO exhibit an obligate-ordered addition of organic substrate before dioxygen. As this substrate-gated O2-reactivity extends to the oxygen-surrogate, nitric oxide (NO), EPR spectroscopy has long been used to interrogate the [substrate:NO:enzyme] ternary complex. In principle, these studies can be extrapolated to provide information about transient iron-oxo intermediates produced during catalytic turnover with dioxygen. In this work, we demonstrate that cyanide mimics the native thiol-substrate in ordered-addition experiments with MDO cloned from Azotobacter vinelandii (AvMDO). Following treatment of the catalytically active Fe(II)-AvMDO with excess cyanide, addition of NO yields a low-spin (S = 1/2) (CN/NO)-Fe-complex. Continuous wave and pulsed X-band EPR characterization of this complex produced in wild-type and H157N variant AvMDO reveal multiple nuclear hyperfine features diagnostic of interactions within the first- and outer-coordination sphere of the enzymatic Fe-site. Spectroscopically validated computational models indicate simultaneous coordination of two cyanide ligands replaces the bidentate (thiol and carboxylate) coordination of 3MPA allowing for NO-binding at the catalytically relevant O2-binding site. This promiscuous substrate-gated reactivity of AvMDO with NO provides an instructive counterpoint to the high substrate-specificity exhibited by mammalian CDO for L-cysteine.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, 800 Lakeshore Drive, Homewood, AL, 35229, USA
| | - Allison N Schmittou
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|