1
|
Ramiro JL, Díaz J, G Neo A, F Marcos C. Unlocking Enol-Ugi-Derived Conformationally Restricted Peptidomimetic Motifs. J Org Chem 2025; 90:4382-4388. [PMID: 40080150 DOI: 10.1021/acs.joc.5c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The enol-Ugi condensation, a versatile multicomponent reaction, provides a rapid and efficient route to enamine peptidomimetics. In this study, we investigated the factors influencing the conformational behavior of three enol-Ugi adducts with distinct structural features. Through DFT calculations and NCI analysis, we identified that noncovalent interactions, including hydrogen bonds and π-π interactions, play a pivotal role in restricting conformational flexibility. While six-membered cyclic enamines 6 and 7 exhibited varying degrees of rotational freedom, the indanone-derived enamine 8 displayed a locked conformation resembling a retropeptidic turn. These findings highlight the potential of tailoring enol-Ugi adducts to mimic biologically relevant peptidic motifs, opening new avenues for drug discovery and design.
Collapse
Affiliation(s)
- José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Cáceres 10003 Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Cáceres 10003 Spain
| | - Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Cáceres 10003 Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Cáceres 10003 Spain
| |
Collapse
|
2
|
Huang D, Manoni F, Sun Z, Liu R, Allen JR, Banerjee A, Cee VJ, Eshon J, Frohn MJ, Kaller MR, Lee H, Li C, Li X, Lopez P, Ma V, Medina JM, Mohr C, Mukhina OA, Pickrell AJ, Stellwagen J, Wu W, Zhang W, Zhu K, Dahal UP, Hu LA, Leavitt M, Li W, Li Y, Ma Y, Rex K, Saiki AY, Wang P, Sun Y, Dai D, Tamayo NA, Lanman BA. Identification of Structurally Novel KRAS G12C Inhibitors through Covalent DNA-Encoded Library Screening. J Med Chem 2025; 68:4801-4817. [PMID: 39930787 PMCID: PMC11873997 DOI: 10.1021/acs.jmedchem.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
Covalent inhibition of the KRASG12C oncoprotein has emerged as a promising therapeutic approach for the treatment of nonsmall cell lung cancer (NSCLC). The identification of KRASG12C inhibitors has typically relied on the high-throughput screening (HTS) of libraries of cysteine-reactive small molecules or on the attachment of cysteine-reactive warheads to noncovalent binders of KRAS. Such screening approaches have historically been limited in the size and diversity of molecules that could be effectively screened. DNA-encoded library (DEL) screening has emerged as a promising approach to accelerate the preparation and screening of incredibly large and diverse chemical libraries. Here, we describe the design and synthesis of a covalent DEL to screen ∼16 million compounds against KRASG12C. We additionally describe the hit identification, validation, and structure-based optimization that culminated in the identification of a series of structurally novel, potent, and selective covalent inhibitors of KRASG12C with good pharmacokinetic profiles and promising in vivo pharmacodynamic effects.
Collapse
Affiliation(s)
- David Huang
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Francesco Manoni
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Zhen Sun
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Rongfeng Liu
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Jennifer R. Allen
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Abhisek Banerjee
- Syngene
Amgen Research & Development Center (SARC), Syngene International Ltd., Biocon Park, Jigani Link Road, Bengaluru 560099, India
| | - Victor J. Cee
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Josephine Eshon
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Michael J. Frohn
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Matthew R. Kaller
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Heejun Lee
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Cui Li
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Xun Li
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Patricia Lopez
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vu Ma
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jose M. Medina
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Christopher Mohr
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Olga A. Mukhina
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Alexander J. Pickrell
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - John Stellwagen
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Wenting Wu
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Wenhan Zhang
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kai Zhu
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Upendra P. Dahal
- Department
of Pharmacokinetics and Drug Metabolism, Amgen Research, 750
Gateway Boulevard, Suite 100, South San Francisco, California 94080, United States
| | - Liaoyuan A. Hu
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Monica Leavitt
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Wencui Li
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Yu Li
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Yingli Ma
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Karen Rex
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Anne Y. Saiki
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Wang
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Yaping Sun
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Dongcheng Dai
- Department
of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560
Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Nuria A. Tamayo
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Brian A. Lanman
- Department
of Medicinal Chemistry, Discovery Scale-Up & Development, Oncology Research, Structural Biology, Computational and
Data Sciences, and Lead Discovery & Characterization, Amgen Research, One
Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
3
|
Yang S, Gu X, Chen L, Zhu W. Discovery of Novel Spirocyclic MAT2A Inhibitors Demonstrating High In Vivo Efficacy in MTAP-Null Xenograft Models. J Med Chem 2025; 68:3480-3494. [PMID: 39835703 DOI: 10.1021/acs.jmedchem.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Synthetic lethality offers a robust strategy for discovering the next generation of precision medicine therapies tailored for molecularly defined patient populations. MAT2A inhibition is synthetically lethal in several cancers that exhibit a homozygous deletion of S-methyl-5'-thioadenosine phosphorylase (MTAP). Herein, we report the identification of novel MAT2A inhibitors featuring a spiral ring to circumvent the C-N atropisomeric chirality utilizing structure-based drug design. The Hit compound 9 exhibited high potency in enzymatic activity (IC50 = 7 nM) and in HCT-116 MTAP(-/-) cell potency (IC50 = 17 nM). Further optimization has led to the identification of two new lead compounds: a brain-penetrant compound, 29-1, and a potent but limited brain-penetrant compound, 39. Both of these lead compounds demonstrate increased plasma drug exposure and exhibit significant efficacy in xenograft models that are depleted of MTAP. We hope that identifying a brain-penetrant MAT2A inhibitor will create new opportunities to explore the potential therapeutic effects of S-adenosylmethionine modulation in the central nervous system.
Collapse
Affiliation(s)
- Sai Yang
- Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| | - Xiaowen Gu
- Biology Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| | - Lei Chen
- Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| | - Weixing Zhu
- Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| |
Collapse
|
4
|
Ciceri S, Fassi EMA, Vezzoli V, Bonomi M, Colombo D, Ferraboschi P, Grazioso G, Grisenti P, Villa S, Castellano C, Meneghetti F. Novel non-peptide uracil-derived human gonadotropin-releasing hormone receptor antagonists. Eur J Med Chem 2024; 279:116903. [PMID: 39342681 DOI: 10.1016/j.ejmech.2024.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Gonadotropin-releasing hormone (GnRH) is the main regulator of the reproductive system, acting on gonadotropic cells by binding to the GnRH1 receptor (GnRH1R). Traditionally, therapies targeting this receptor have relied on peptide modulators, which required subcutaneous or intramuscular injections. Due to the limitations of the parenteral administrations, there is a growing interest in developing oral small molecule modulators of GnRH1R as more convenient therapeutic alternatives. In this study, we examined the potential of chemically modifying elagolix, the first approved non-peptide, orally active GnRH1R antagonist, to increase its atropisomeric properties by introducing new moieties. We designed and synthesized the thio-uracil (1) and cytosine (2) derivatives of elagolix, both demonstrating GnRH1R antagonistic activities, with EC50 values of 39 and 110 nM, respectively. The atropisomers of 1 and 2 were efficiently separated using silica gel chromatography, and extensive NMR investigation, supported by Density Functional Theory (DFT) calculations, allowed us to define their conformations and rotational barriers. Docking and Molecular Dynamics (MD) studies revealed that 1 and 2 bind to GnRH1R with ΔG values comparable to elagolix, but through distinct binding modes. These results highlight the potential of non-peptide modulators to effectively modulate GnRH1R activity and pave the way for developing novel modulators.
Collapse
Affiliation(s)
- Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| | - Enrico M A Fassi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy; Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Diego Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Paride Grisenti
- Chemical-Pharmaceutical Consulting and IP Management, Milan, Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
5
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
6
|
Varona M, Dobson DP, Napolitano JG, Thomas R, Ochoa JL, Russell DJ, Crittenden CM. High Resolution Ion Mobility Enables the Structural Characterization of Atropisomers of GDC-6036, a KRAS G12C Covalent Inhibitor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2586-2595. [PMID: 39051157 DOI: 10.1021/jasms.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
GDC-6036 is a covalent KRAS G12C inhibitor that demonstrates high potency and selectivity. Structurally, GDC-6036 consists of several motifs that make the analytical characterization of this molecule challenging, including a highly basic pyrrolidine motif bonded to a quinazoline ring via an ether bond and an atropisomeric carbon-carbon bond between functionalized pyridine and quinazoline groups. Structurally, the desired atropisomer was synthesized via an atroposelective Negishi coupling with very high yield. However, having a direct way to analyze and confirm the presence of the atropisomeric species remained challenging in routine analytical workflows. In this study, both variable temperature nuclear magnetic resonance (VT-NMR) and two different approaches of in-line ion mobility coupled to liquid chromatography mass spectrometry (LC-MS) workflows were evaluated for the characterization of GDC-6036 and its undesired atropisomer (Compound B) to support synthetic route development. Briefly, both VT-NMR and traveling wave ion mobility spectrometry (TWIMS) enabled by structures for lossless ion manipulation (SLIM) technology coupled to high resolution MS (HRMS) are able to elucidate the structures of the atropisomers in a complex mixture. Drift tube IMS (DTIMS) was also evaluated, but lacked the resolving power to demonstrate separation between the two species in a mixture, but did show slight differences in their arrival times when multiplexed and injected separately. The determined resolving power (Rp) by multiplexing the ions via DTIMS was 67.3 and 60.5 for GDC-6036 and Compound B, respectively, while the two peak resolving power (Rpp) was determined to be 0.41, indicating inadequate resolution between the two species. Alternatively, the SLIM-IM studies showed Rp of 103.8 and 99.4, with a Rpp of 2.64, indicating good separation between the atropisomers. Furthermore, the CCS/z for GDC-6036 and Compound B was determined to be 231.2 Å2/z and 235.0 Å2/z, respectively. Quantitative experiments demonstrate linearity (R2 >0.99) for both GDC-6036 and Compound B while maintaining separation via SLIM-IM. Spike recoveries of one atropisomer relative to the other yielded strong recoveries (98.7% to 102.5%) while maintaining reproducibility (<7% RSD). The study herein describes the analytical process for evaluating new technologies and strategies for implementation in routine biopharmaceutical characterization workflows.
Collapse
Affiliation(s)
- Marcelino Varona
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P Dobson
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - José G Napolitano
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jessica L Ochoa
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David J Russell
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Crittenden
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Hao X, Tian Z, Yao Z, Zang T, Song S, Lin L, Qiao T, Huang L, Fu H. Atroposelective Synthesis of Axial Biaryls by Dynamic Kinetic Resolution Using Engineered Imine Reductases. Angew Chem Int Ed Engl 2024; 63:e202410112. [PMID: 39016184 DOI: 10.1002/anie.202410112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
Axially chiral biaryl compounds are ubiquitous scaffolds in natural products, bioactive molecules, chiral ligands and catalysts, but biocatalytic methods for their asymmetric synthesis are limited. Herein, we report a highly efficient biocatalytic route for the atroposelective synthesis of biaryls by dynamic kinetic resolution (DKR). This DKR approach features a transient six-membered aza-acetal-bridge-promoted racemization followed by an imine reductase (IRED)-catalyzed stereoselective reduction to construct the axial chirality under ambient conditions. Directed evolution of an IRED from Streptomyces sp. GF3546 provided a variant (S-IRED-Ss-M11) capable of catalyzing the DKR process to access a variety of biaryl aminoalcohols in high yields and excellent enantioselectivities (up to 98 % yield and >99 : 1 enantiomeric ratio). Molecular dynamics simulation studies on the S-IRED-Ss-M11 variant revealed the origin of its improved activity and atroposelectivity. By exploiting the substrate promiscuity of IREDs and the power of directed evolution, our work further extends the biocatalysts' toolbox to construct challenging axially chiral molecules.
Collapse
Affiliation(s)
- Xinyue Hao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuangfei Tian
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhouchang Yao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tienan Zang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shucheng Song
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Lin
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14850, United States
| | - Ling Huang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haigen Fu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Fragkiadakis M, Thomaidi M, Stergiannakos T, Chatziorfanou E, Gaidatzi M, Michailidis Barakat A, Stoumpos C, Neochoritis CG. High Rotational Barrier Atropisomers. Chemistry 2024; 30:e202401461. [PMID: 38962895 DOI: 10.1002/chem.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
Atropisomers have attracted a great deal of attention lately due to their numerous applications in organic synthesis and to their employment in drug discovery. However, the synthetic arsenal at our disposal with which to access them remains limited. The research described herein is two-pronged; we both demonstrate the use of MCR chemistry as a synthetic strategy for the de novo synthesis of a class of atropisomers having high barriers to rotation with the simultaneous insertion of multiple chiral elements and we study these unprecedented molecular systems by employing a combination of crystallography, NMR and DFT calculations. By fully exploiting the synthetic capabilities of our chemistry, we have been able to monitor a range of different types of interaction, i. e. π-π, CH-π, heteroatom-π and CD-π, in order to conduct structure-property studies. The results could be applied both to atroposelective synthesis and in drug discovery.
Collapse
Affiliation(s)
| | - Maria Thomaidi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | | | - Maria Gaidatzi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | - Constantinos Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, Heraklion, 70013, Greece
| | | |
Collapse
|
9
|
Naghim A, Rodriguez J, Chuzel O, Chouraqui G, Bonne D. Enantioselective Synthesis of Heteroatom-Linked Non-Biaryl Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202407767. [PMID: 38748462 DOI: 10.1002/anie.202407767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Atropisomers hold significant fascination, not only for their prevalence in natural compounds but also for their biological importance and wide-ranging applications as chiral materials, ligands, and organocatalysts. While biaryl and heterobiaryl atropisomers are commonly studied, the enantioselective synthesis of less abundant heteroatom-linked non-biaryl atropisomers presents a formidable challenge in modern organic synthesis. Unlike classical atropisomers, these molecules allow rotation around two bonds, resulting in low barriers to enantiomerization through concerted bond rotations. In recent years the discovery of new configurationally stable rare non-biaryl scaffolds such as aryl amines, aryl ethers and aryl sulfones as well as innovative methodologies to control their configuration have been disclosed in the literature and constitute the topic of this minireview.
Collapse
Affiliation(s)
- Abdelati Naghim
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| |
Collapse
|
10
|
Xu Z, Wang Z, Shi X, Ding R, Han L, Yang X, Zhang H, Hobson AD. Impact of atropisomerism on a non-steroidal glucocorticoid receptor agonist. RSC Med Chem 2024; 15:2357-2371. [PMID: 39026657 PMCID: PMC11253871 DOI: 10.1039/d4md00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
To investigate atropisomers of non-steroidal glucocorticoid receptor modulator GSK866, a virtual library of substituted benzoic acid analogues was enumerated. Compounds from this library were subjected to a torsion angle scan using Spartan'20 to calculate the torsion rotation energy barrier which identified compounds predicted to be stable as atropisomers. After synthesis of the library, analysis showed that compounds 13 and 14 existed as stable atropisomers 13a, 13b, 14a and 14b, in agreement with the earlier calculations. Screening in a glucocorticoid receptor cellular assay showed that one compound from each atropisomer pair was significantly more potent than the other. Docking in a public structure of the glucocorticoid receptor (PBD code 3E7C) enabled the stereochemistry of the two most potent compounds 13a and 14b to be assigned as (R a) and (S a), respectively.
Collapse
Affiliation(s)
- Zhou Xu
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Zhongyuan Wang
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Xiaona Shi
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Rui Ding
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Li Han
- WuXi AppTec, Waigaoqiao Free Trade Zone 288 Fute Zhong Road, Pudong New Area Shanghai 200131 China
| | - Xueping Yang
- WuXi AppTec, Waigaoqiao Free Trade Zone 288 Fute Zhong Road, Pudong New Area Shanghai 200131 China
| | - Hongmei Zhang
- WuXi AppTec, Waigaoqiao Free Trade Zone 288 Fute Zhong Road, Pudong New Area Shanghai 200131 China
| | - Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| |
Collapse
|
11
|
Song Q, Zhang Q, Fan X, Kayaat F, Lv R, Li J, Wang Y. The discovery of novel imidazo[1,2- a]pyridine derivatives as covalent anticancer agents. Org Biomol Chem 2024; 22:5374-5384. [PMID: 38869445 DOI: 10.1039/d4ob00694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The success of targeted covalent inhibitors (TCIs) for treating cancers has spurred the search for novel scaffolds to install covalent warheads. In our endeavour, using a scaffold hopping strategy, we managed to utilize imidazo[1,2-a]pyridine as the core backbone and explored its potential for the development of covalent inhibitors, therefore, synthesizing a series of novel KRAS G12C inhibitors facilitated by the Groebke-Blackburn-Bienaymè reaction (GBB reaction). Preliminary bio-evaluation screening delivered compound I-11 as a potent anticancer agent for KRAS G12C-mutated NCI-H358 cells, whose effects were further clarified by a series of cellular, biochemical, and molecular docking experiments. These results not only indicate the potential of compound I-11 as a lead compound for the treatment of intractable cancers, but also validate the unique role of imidazo[1,2-a]pyridine as a novel scaffold suitable for the discovery of covalent anticancer agents.
Collapse
Affiliation(s)
- Qin Song
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Fatmata Kayaat
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Ruicheng Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, P. R. China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, P. R. China
| |
Collapse
|
12
|
Chetta M, Basile A, Tarsitano M, Rivieccio M, Oro M, Capitanio N, Bukvic N, Priolo M, Rosati A. The Target Therapy Hyperbole: "KRAS (p.G12C)"-The Simplification of a Complex Biological Problem. Cancers (Basel) 2024; 16:2389. [PMID: 39001451 PMCID: PMC11240669 DOI: 10.3390/cancers16132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene variations are linked to the development of numerous cancers, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). The lack of typical drug-binding sites has long hampered the discovery of therapeutic drugs targeting KRAS. Since "CodeBreaK 100" demonstrated Sotorasib's early safety and efficacy and led to its approval, especially in the treatment of non-small cell lung cancer (NSCLC), the subsequent identification of specific inhibitors for the p.G12C mutation has offered hope. However, the CodeBreaK 200 study found no significant difference in overall survival (OS) between patients treated with Docetaxel and Sotorasib (AMG 510), adding another degree of complexity to this ongoing challenge. The current study compares the three-dimensional structures of the two major KRAS isoforms, KRAS4A and KRAS4B. It also investigates the probable structural changes caused by the three major mutations (p.G12C, p.G12D, and p.G12V) within Sotorasib's pocket domain. The computational analysis demonstrates that the wild-type and mutant isoforms have distinct aggregation propensities, resulting in the creation of alternate oligomeric configurations. This study highlights the increased complexity of the biological issue of using KRAS as a therapeutic target. The present study stresses the need for a better understanding of the structural dynamics of KRAS and its mutations to design more effective therapeutic approaches. It also emphasizes the potential of computational approaches to shed light on the complicated molecular pathways that drive KRAS-mediated oncogenesis. This study adds to the ongoing efforts to address the therapeutic hurdles presented by KRAS in cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Anna Basile
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (A.R.)
| | - Marina Tarsitano
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Maria Rivieccio
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Maria Oro
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy;
| | - Manuela Priolo
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Alessandra Rosati
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (A.R.)
| |
Collapse
|
13
|
Liu Y, Yuan L, Dai L, Zhu Q, Zhong G, Zeng X. Carbene-Catalyzed Atroposelective Construction of Chiral Diaryl Ethers. J Org Chem 2024. [PMID: 38738853 DOI: 10.1021/acs.joc.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Atropoisomeric chemotypes of diaryl ethers-related scaffolds are prevalent in naturally active compounds. Nevertheless, there remains considerable research to be carried out on the catalytic asymmetric synthesis of these axially chiral molecules. In this instance, we disclose an N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. NHC desymmetrization produces axially chiral diaryl ether atropisomers with high yields and enantioselectivities in moderate circumstances. Chiral diaryl ether compounds may be precursors for highly functionalized diaryl ethers with bioactivity and chiral ligands for asymmetric catalysis.
Collapse
Affiliation(s)
- Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lutong Yuan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Linlong Dai
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
14
|
Đorđević Zlatković MR, Radulović NS, Dangalov M, Vassilev NG. Conformation Analysis and Stereodynamics of Symmetrically ortho-Disubstituted Carvacrol Derivatives. Molecules 2024; 29:1962. [PMID: 38731453 PMCID: PMC11085911 DOI: 10.3390/molecules29091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The design and synthesis of analogs of natural products can be a valuable source of medicinal preparations for the pharmaceutical industry. In the present study, the structural elucidation of eleven derivatives of 2,4-dihalogeno substituted synthetic analogues of the natural compound carvacrol was carried out by means of NMR experiments, and of another thirteen by DFT calculations. By selective NOE experiments and the irradiation of CH signals of the isopropyl group, individual conformers were assigned as syn and anti. By comparing GIAO/B3LYP/6-311++G(d,p)-calculated and experimentally measured vicinal 3JCH spin-spin constants, this assignment was confirmed. An unusual relationship is reported for proton-carbon vicinal couplings: 3JCH (180°) < 3JCH (0°). The conformational mobility of carvacrols was studied by 2D EXSY spectra. The application of homonuclear decoupling technique (HOBS) to these spectra simplifies the spectra, improves resolution without reducing the sensitivity, and allows a systematic examination of the rotational barrier of all compounds via their CH signals of the isopropyl group in a wider temperature interval. The rate constants of the isopropyl rotation between syn and anti conformers were determined and the corresponding energy barriers (14-17 kcal/mol) were calculated. DFT calculations of the energy barriers in carvacrol derivatives allowed the determination of the steric origin of the restricted isopropyl rotation. The barrier height depends on the size of the 2- and 4-position substituents, and is independent of the derivatization of the OH group.
Collapse
Affiliation(s)
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
15
|
Thönnißen V, Westphäling J, Atodiresei IL, Patureau FW. Atroposelective Chan-Evans-Lam Amination. Chemistry 2024; 30:e202304378. [PMID: 38179829 DOI: 10.1002/chem.202304378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
The synthetic control of atropoisomerism along C-N bonds is a major challenge, and methods that allow C-N atroposelective bond formation are rare. This is a problem because each atropoisomer can feature starkly differentiated biological properties. Yet, among the three most practical and applicable classical amination methods available: 1) the Cu-catalyzed Ullmann-Goldberg reaction, 2) the Pd-catalyzed Buchwald-Hartwig reaction, and 3) the Cu-catalyzed Chan-Evans-Lam reaction, none has truly been rendered atroposelective at the newly formed C-N bond. The first ever Chan-Evans-Lam atroposelective amination is herein described with a simple copper catalyst and newly designed PyrOx chiral ligand. This method should find important applications in asymmetric synthesis, in particular for medicinal chemistry.
Collapse
Affiliation(s)
- Vinzenz Thönnißen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Johannes Westphäling
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
16
|
McVicker R, O’Boyle NM. Chirality of New Drug Approvals (2013-2022): Trends and Perspectives. J Med Chem 2024; 67:2305-2320. [PMID: 38344815 PMCID: PMC10895675 DOI: 10.1021/acs.jmedchem.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Many drugs are chiral with their chirality determining their biological interactions, safety, and efficacy. Since the 1980s, there has been a regulatory preference to bring single enantiomer to market. This perspective discusses trends related to chirality that have developed in the past decade (2013-2022) of new drug approvals. The EMA has not approved a racemate since 2016, while the average for the FDA is one per year from 2013 to 2022. These 10 include drugs which have been previously marketed elsewhere for several decades, analogues of pre-existing drugs, or drugs where the undefined stereocenter does not play a role in therapeutic activity. Two chiral switches were identified which were both combined with drug repurposing. This combination strategy has the potential to produce therapeutically valuable drugs in a faster time frame. Two class III atropisomers displaying axial chirality were approved between 2013 and 2022, one as a racemate and one as a single enantiomer.
Collapse
Affiliation(s)
- Rebecca
U. McVicker
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
- Gamlen
Tableting Ltd, 3 Stanton
Way, London SE26 5FU, United Kingdom
| | - Niamh M. O’Boyle
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
| |
Collapse
|
17
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
18
|
Caceres-Cortes J, Falk B, Mueller L, Dhar TGM. Perspectives on Nuclear Magnetic Resonance Spectroscopy in Drug Discovery Research. J Med Chem 2024; 67:1701-1733. [PMID: 38290426 DOI: 10.1021/acs.jmedchem.3c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation. We will discuss innovations in NMR spectroscopy at the chemistry and biology interface that have broadened NMR's utility from hit identification through lead optimization activities. We will also discuss the promise of emerging NMR approaches in bridging our understanding and addressing challenges in the pursuit of the therapeutic agents of the future.
Collapse
Affiliation(s)
- Janet Caceres-Cortes
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Bradley Falk
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Luciano Mueller
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Discovery Chemistry, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 085401, United States
| |
Collapse
|
19
|
Yang QQ, Chen C, Yao D, Liu W, Liu B, Zhou J, Pan D, Peng C, Zhan G, Han B. Catalytic Atroposelective Synthesis of Axially Chiral Azomethine Imines and Neuroprotective Activity Evaluation. Angew Chem Int Ed Engl 2024; 63:e202312663. [PMID: 38032817 DOI: 10.1002/anie.202312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518060, Guangdong, China
| | - Wei Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dabo Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
20
|
Wang Y, Yao M, Li C, Yang K, Qin X, Xu L, Shi S, Yu C, Meng X, Xie C. Targeting ST8SIA6-AS1 counteracts KRAS G12C inhibitor resistance through abolishing the reciprocal activation of PLK1/c-Myc signaling. Exp Hematol Oncol 2023; 12:105. [PMID: 38104151 PMCID: PMC10724920 DOI: 10.1186/s40164-023-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND KRASG12C inhibitors (KRASG12Ci) AMG510 and MRTX849 have shown promising efficacy in clinical trials and been approved for the treatment of KRASG12C-mutant cancers. However, the emergence of therapy-related drug resistance limits their long-term potential. This study aimed to identify the critical mediators and develop overcoming strategies. METHODS By using RNA sequencing, RT-qPCR and immunoblotting, we identified and validated the upregulation of c-Myc activity and the amplification of the long noncoding RNA ST8SIA6-AS1 in KRASG12Ci-resistant cells. The regulatory axis ST8SIA6-AS1/Polo-like kinase 1 (PLK1)/c-Myc was investigated by bioinformatics, RNA fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation. Gain/loss-of-function assays, cell viability assay, xenograft models, and IHC staining were conducted to evaluate the anti-cancer effects of co-inhibition of ST8SIA6-AS1/PLK1 pathway and KRAS both in vitro and in vivo. RESULTS KRASG12Ci sustainably decreased c-Myc levels in responsive cell lines but not in cell lines with intrinsic or acquired resistance to KRASG12Ci. PLK1 activation contributed to this ERK-independent c-Myc stability, which in turn directly induced PLK1 transcription, forming a positive feedback loop and conferring resistance to KRASG12Ci. ST8SIA6-AS1 was found significantly upregulated in resistant cells and facilitated the proliferation of KRASG12C-mutant cancers. ST8SIA6-AS1 bound to Aurora kinase A (Aurora A)/PLK1 and promoted Aurora A-mediated PLK1 phosphorylation. Concurrent targeting of KRAS and ST8SIA6-AS1/PLK1 signaling suppressed both ERK-dependent and -independent c-Myc expression, synergistically led to cell death and tumor regression and overcame KRASG12Ci resistance. CONCLUSIONS Our study deciphers that the axis of ST8SIA6-AS1/PLK1/c-Myc confers both intrinsic and acquired resistance to KRASG12Ci and represents a promising therapeutic target for combination strategies with KRASG12Ci in the treatment of KRASG12C-mutant cancers.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiaolong Qin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengcheng Yu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiangjun Meng
- Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
- China Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai, 200001, China
- China Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, 200001, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
21
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
22
|
Heeb JP, Clayden J, Smith MD, Armstrong RJ. Interrogating the configurational stability of atropisomers. Nat Protoc 2023; 18:2745-2771. [PMID: 37542183 DOI: 10.1038/s41596-023-00859-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/05/2023] [Indexed: 08/06/2023]
Abstract
Atropisomers are molecules whose stereogenicity arises from restricted rotation about a single bond. They are of current importance because of their applications in catalysis, medicine and materials science. The defining feature of atropisomeric molecules is that their stereoisomers are related to one another by bond rotation: as a result, evaluating their configurational stability (i.e., the rate at which their stereoisomers interconvert) is central to any work in this area. Important atropisomeric scaffolds include C-C linked biaryls, such as the ligand BINAP and the drug vancomycin, and C-N linked amine derivatives such as the drug telenzepine. This article focuses on the three most widely used experimental methods that are available to measure the rate of racemization in atropisomers, namely: (i) kinetic analysis of the racemization of an enantioenriched sample, (ii) dynamic HPLC and (iii) variable-temperature NMR. For each technique, an explanation of the theory is set out, followed by a detailed experimental procedure. A discussion is also included of which technique to try when confronted with a new molecular structure whose properties are not yet known. None of the three procedures require complex experimental techniques, and all can be performed by using standard analytical equipment (NMR and HPLC). The time taken to determine a racemization rate depends on which experimental method is required, but for a new compound it is generally possible to measure a racemization rate in <1 d.
Collapse
Affiliation(s)
| | | | - Martin D Smith
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Roly J Armstrong
- School of Natural and Environmental Sciences (Chemistry), Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
23
|
Zhou X, Ji Y, Zhou J. Multiple Strategies to Develop Small Molecular KRAS Directly Bound Inhibitors. Molecules 2023; 28:molecules28083615. [PMID: 37110848 PMCID: PMC10146153 DOI: 10.3390/molecules28083615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the "holy grail" of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other "undruggable" targets.
Collapse
Affiliation(s)
- Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yang Ji
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
24
|
Chen ZH, Li TZ, Wang NY, Ma XF, Ni SF, Zhang YC, Shi F. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N'-Bisindoles. Angew Chem Int Ed Engl 2023; 62:e202300419. [PMID: 36749711 DOI: 10.1002/anie.202300419] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N'-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N'-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N'-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N'-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Han Chen
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao-Fang Ma
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
25
|
Dai L, Liu Y, Xu Q, Wang M, Zhu Q, Yu P, Zhong G, Zeng X. A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216534. [PMID: 36536515 DOI: 10.1002/anie.202216534] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.,Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qing Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Meifang Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Peiyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
26
|
Yang X, Li Z, Xu W, Zhu G, Feng X, Zhang J, Zhao H, Chen Y, Kong J, Mai W, Li LS, Pippel DJ, Ren P, Deng X. Hindered Biaryl Bond Construction and Subsequent Diastereomeric Crystallization to Produce an Atropisomeric Covalent KRAS G12C Inhibitor ARS-2102. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaogen Yang
- STA Pharmaceutical Co., Ltd., a WuXi AppTec Company, 288 Fute Zhong Road, Waigaoqiao Pilot Free Trade Zone, Shanghai 200131, China
| | - Zhiwen Li
- STA Pharmaceutical Co., Ltd., a WuXi AppTec Company, 288 Fute Zhong Road, Waigaoqiao Pilot Free Trade Zone, Shanghai 200131, China
| | - Wenwen Xu
- STA Pharmaceutical Co., Ltd., a WuXi AppTec Company, 288 Fute Zhong Road, Waigaoqiao Pilot Free Trade Zone, Shanghai 200131, China
| | - Guanming Zhu
- STA Pharmaceutical Co., Ltd., a WuXi AppTec Company, 288 Fute Zhong Road, Waigaoqiao Pilot Free Trade Zone, Shanghai 200131, China
| | - Xiantong Feng
- WuXi AppTec Co., Ltd., 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Jun Zhang
- WuXi AppTec Co., Ltd., 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Hongbin Zhao
- WuXi AppTec Co., Ltd., 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Yuyin Chen
- WuXi AppTec Co., Ltd., 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Jianshe Kong
- WuXi AppTec Co., Ltd., 168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Wanping Mai
- Wellspring Biosciences Inc., 10770 Wateridge Cir. Unit 120, San Diego, California 92121, United States
| | - Lian-Sheng Li
- Wellspring Biosciences Inc., 10770 Wateridge Cir. Unit 120, San Diego, California 92121, United States
| | - Daniel J. Pippel
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pingda Ren
- Wellspring Biosciences Inc., 10770 Wateridge Cir. Unit 120, San Diego, California 92121, United States
| | - Xiaohu Deng
- Wellspring Biosciences Inc., 10770 Wateridge Cir. Unit 120, San Diego, California 92121, United States
| |
Collapse
|