1
|
Guan YQ, Ma KG, Wang DC, Guo HM. Asymmetric Olefin Isomerization via Phase-Transfer-Catalyzed [1,3]-Hydrogen Transfer for Access to Axially Chiral Furan-Benzimidazoles. Org Lett 2025. [PMID: 40343855 DOI: 10.1021/acs.orglett.5c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
An efficient catalytic asymmetric olefin isomerization of axially chiral methylene dihydrofuran-benzimidazoles via kinetic resolution is reported. Under mild phase-transfer catalysis, axially chiral furan-benzimidazole compounds and recovered methylene dihydrofuran-benzimidazoles were obtained in high ee. The combination of the kinetic resolution and TBD-catalyzed isomerization of recovered dihydrofuran-benzimidazoles provided access to both enantiomers of furan-benzimidazoles. Deuterium-labeling experiments reveal intramolecular [1,3]-H transfer mechanism. The utility of this method was demonstrated by scale-up synthesis and functionalization of the products.
Collapse
Affiliation(s)
- Yu-Qing Guan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kai-Ge Ma
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dong-Chao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Ren Y, Lin C, Zhang H, Liu Z, Wei D, Feng J, Du D. Organocatalytic atroposelective de novo construction of monoaxially and 1,4-diaxially chiral fused uracils with potential antitumor activity. Chem Sci 2025; 16:7876-7883. [PMID: 40191121 PMCID: PMC11966538 DOI: 10.1039/d5sc00452g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Atropisomers bearing multiple stereogenic axes are of increasing relevance to materials science, pharmaceuticals, and catalysis. However, the catalytic enantioselective construction of these atropisomers in a single step remains synthetically challenging. We herein report the first NHC-organocatalytic enantioselective synthesis of a new class of monoaxially and 1,4-diaxially chiral fused uracil scaffolds. Preliminary studies on the antitumor activity of selected compounds demonstrated that this new class of axially chiral uracil derivatives may have potential applications in the discovery of new lead compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Yuzhi Ren
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Chen Lin
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Han Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Zuquan Liu
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Jie Feng
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
3
|
Li L, Ding L, Zhang X, Zhang C, Wang M, Gu Z. Catalytic Atroposelective aza-Grob Fragmentation: An Approach toward Axially Chiral Biarylnitriles. J Am Chem Soc 2025. [PMID: 40327742 DOI: 10.1021/jacs.5c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Grob fragmentation is a powerful synthetic tool for cleaving C-C bonds, which was particularly useful in the construction of seven- to nine-membered carbocycles or heterocycles. This reaction typically breaks one C-C bond and one C-X bond and forms two unsaturated functional groups. As no stereogenic centers are generated, catalytic asymmetric Grob fragmentation has remained unexplored. In this study, we have successfully developed a catalytic asymmetric aza-Grob fragmentation of α-keto oxime esters, achieving atroposelective C-C bond cleavage to construct axially chiral biarylnitriles. Single-crystal X-ray diffraction analysis of oxime esters elucidated the structure-reactivity relationship, highlighting the role of torsional strain. These studies also revealed the unique role of the 2-phenyl benzoyl group in controlling the substrate conformation, tuning reactivity, and stereoselectivity. The 1H NMR titration experiments provided brief insights into the activation mode of the catalyst with the substrate, suggesting a multi-hydrogen-bonding interaction model.
Collapse
Affiliation(s)
- Lin Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chengnuo Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
4
|
Begum F, Udayakumar SB, Kumari P, Prasanthkumar S, Nayani K. Photoactive Arylamine Appended β-Naphthols via Friedel-Crafts Alkylation of Vinylidine Quinone Methides (VQMs). Chem Asian J 2025:e202401907. [PMID: 40237389 DOI: 10.1002/asia.202401907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Substituted naphthol derivatives have received significant attention due to their wide range of biological and pharmaceutical activities, and further extending the generation of naphthol with photoactive materials promotes optoelectronic applications. Nevertheless, the synthetic methodology of such materials hitherto unknown. In this study, we have adopted an efficient Friedel-Crafts reaction of ortho-alkynylnaphthols with N,N-disubstituted arylamines to generate arylamine-appended β-naphthol derivatives. This transformation features broad substrate scope, excellent yields, and high atom economy and the method was successfully adapted for late-stage functionalization of biomolecules and drug molecules with excellent yields. Further, UV-vis absorption and emission studies reveal that these materials have shown visible range absorption and blue emission with a quantum efficiency of 10%. Lately, photo-irradiation on arylamine leads to a charged state that facilitates the improvement of the electronic properties. Consequently, novel synthetic methodology of photoactive materials paves the way to generate new developments in the area of small molecule-derived optoelectronics.
Collapse
Affiliation(s)
- Fathima Begum
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Sowmya B Udayakumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priti Kumari
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Seelam Prasanthkumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Moon J, Shin E, Kwon Y. Enantioselective Desymmetrization of Biaryls via Cooperative Photoredox/Brønsted Acid Catalysis and Its Application to the Total Synthesis of Ancistrobrevolines. J Am Chem Soc 2025; 147:12800-12810. [PMID: 40186573 DOI: 10.1021/jacs.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Photoredox catalysis has emerged as a powerful tool for forming and breaking chemical bonds, further taking hold with its integration with asymmetric catalysis. While the dual-catalytic approach has led to successful examples of the control of stereogenic centers, the control of stereogenic axes has remained underexplored. In this study, an acylimine intermediate was generated through photoredox catalysis, and a symmetric substrate, 2-arylresorcinol, was desymmetrized with the aid of chiral phosphoric acid catalysis. Using this approach, a stereogenic center and stereogenic axis were successfully controlled to provide a natural-product-driven compound. The origins of enantioselectivity and diastereoselectivity were investigated through a density functional theory study of four possible enantiodetermining transition states. Consequently, the first total syntheses of the ring-contracted naphthylisoquinoline alkaloid ancistrobrevolines A and B were accomplished concisely. This approach provides not only a novel methodology and strategy to synthesize naphthylisoquinoline alkaloids but also a direction to advance catalytic research and total synthesis studies.
Collapse
Affiliation(s)
- Junsoo Moon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eunjoo Shin
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Guo B, Yan X, Wang Z, Shen C, Chen W, Cen S, Peng Q, Zhang Z. Enhanced Pyridine-Oxazoline Ligand-Enabled Pd(II)-Catalyzed Aminoacetoxylation of Alkenes for the Asymmetric Synthesis of Biaryl-Bridged 7-Membered N-Heterocycles and Atropisomers. J Am Chem Soc 2025; 147:12614-12626. [PMID: 40167529 DOI: 10.1021/jacs.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A new class of binaphthyl unit-enhanced pyridine-oxazoline ligands was developed to promote the Pd-catalyzed enantioselective intramolecular 7-exo aminoacetoxylation of unactivated biaryl alkenes. Biaryl-bridged 7-membered N-heterocycles bearing a chiral center were obtained in good yields with excellent enantioselectivities (up to 99:1 er). Computational investigations on a series of biaryl-bridged 7-membered rings provided insights into the rotational barrier of the potentially chiral biaryl unit by the substituent effect including the heteroatom, the protecting group, and the chiral center. The kinetic resolution of racemic axially chiral biaryls via intramolecular enantioselective aminoacetoxylation of alkenes has also been achieved, affording previously inaccessible biaryl-bridged 7-membered N-heterocycles bearing both a chiral center and a chiral axis, as well as axially chiral biaryl amino alcohols.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoyang Yan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zicong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weifu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Wang JY, Sun J. Design, Synthesis and Application of Chiral Spirocyclic Bisindoles. Angew Chem Int Ed Engl 2025; 64:e202424773. [PMID: 39887825 DOI: 10.1002/anie.202424773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
While modifications of the privileged catalyst backbones, such as 1,1'-spirobiindane-7,7'-diol (SPINOL), have led to the development of diverse useful chiral catalysts, the incorporation of heteroarenes in such chiral spirocyclic structures has limitedly known. Herein we report the design of a type of chiral spirocyclic bisindole skeletons where the electronically distinct heteroarenes serve as direct anchor for functional sites. Separate approaches for the synthesis of two different families of such skeletons have been developed via chiral phosphoric acid and rhodium catalysis, respectively. Both strategies provided expedient access to the highly enantioenriched spiro-bisindoles, owing to not only the high nucleophilicity of the indole ring, but also the robust asymmetric control. These new skeletons have been demonstrated as backbones of effective chiral catalysts for both transition metal catalysis and organocatalysis.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
8
|
Guo SK, Zhang YH, Yang F, An XD, Shen YB, Xiao J, Qiu B. Synthesis of All Ring Sizes of Medium-Sized Heterocycles Bridged Biaryls via VQM-Enabled Diversity-Oriented Synthetic Strategy. Org Lett 2025; 27:3237-3241. [PMID: 40130904 DOI: 10.1021/acs.orglett.5c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Herein, for the first time, the controllable, accurate, and diverse synthesis of all ring sizes of medium-sized (8- to 11-membered) indole-derived bridged biaryls has been realized by using ingeniously designed o-alkynylnaphthols that feature cyclic amines with adjustable ring sizes. The transformation may proceed through a DBN-mediated in-situ generation of vinylidene ortho-quinone methides/indole-ring formation/ring expansion cascade sequence, which is characterized by acceptable to excellent yields and good functional group tolerance.
Collapse
Affiliation(s)
- Shu-Kui Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Han Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Ding X, Wang C. Nickel-Catalyzed Dynamic Kinetic Asymmetric Reductive Arylation of Aldehydes with Heterobiaryl Triflates. Org Lett 2025; 27:2897-2901. [PMID: 40088182 DOI: 10.1021/acs.orglett.5c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
In this context, we report a nickel-catalyzed dynamic kinetic asymmetric reductive arylation of aldehydes with racemic heterobiaryl triflates, offering a series of axially chiral heterobiaryls bearing a centrally chiral secondary alcohol moiety in a highly diastereo- and enantioselective manner. The simultaneous control of both axial and central stereogenic elements of the products lies in the stereoselective nucleophilic addition of the configurationally labile hetereobiaryl nickel complex to the formyl group of aldehydes.
Collapse
Affiliation(s)
- Xinran Ding
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
10
|
Zhao HW, Jiang F, Chen S, Hu J, Xiang SH, Ding WY, Lu W, Tan B. Organocatalytic Asymmetric Construction and Application of Axially Chiral Spiro-bisindoles. Angew Chem Int Ed Engl 2025; 64:e202422951. [PMID: 39672796 DOI: 10.1002/anie.202422951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Spiro skeletons have emerged as a privileged class of chiral carriers across various research fields, including asymmetric catalysis and functional materials, due to their remarkable configurational rigidity. However, limited structural diversity of spiro frameworks significantly restricts the expansion of their applications. Here we present a new class of axially chiral spiro-bisindole frameworks and report their first enantioselective construction via a chiral phosphoric acid-catalyzed intramolecular dehydrative cyclization reaction. Unlike the classical SPINOL backbone, incorporation of indole moieties in place of phenol enhances the nucleophilicity of ketone substrates, thereby eliminating the need for a tedious pre-activation process. By leveraging the retained active sites of indole, the resulting highly enantioenriched spiro-bisindoles can be rapidly transformed into other valuable structures. More importantly, axially chiral fluorescent molecules with good asymmetry factors and quantum fluorescence efficiency are readily accessed, opening a new avenue for developing chiral fluorescent materials. Control experiments demonstrate the pivotal role of both unmasked N-H bonds in achieving good efficiency and enantiocontrol.
Collapse
Affiliation(s)
- Hao-Wen Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sihan Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingliang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Shao Y, Wang H, Chen Q, Tang S, Sun J. Catalytic Atroposelective Electrophilic Amination to Access Axially Chiral Diaryl Phenols. Chem Asian J 2025. [PMID: 40083046 DOI: 10.1002/asia.202500239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025]
Abstract
An enantioselective synthesis of axially chiral diaryl phenols containing sulfonamide groups has been achieved involving an electrophilic amination of 1,1'-biaryl-2,6-diols with N-sulfonyl quinone diimines, catalyzed by a chiral phosphoric acid. This atroposelective reaction offers a modular approach to enantiopure diaryl phenols, with good-to-excellent yields.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Han Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiang Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
12
|
Liu Z, Li C, Zhang S, Du D. Divergent Synthesis of Axially Chiral 2-Pyranones and Fused 2-Pyridones via N-Heterocyclic Carbene-Catalyzed Atroposelective [3 + 3] Annulation. J Org Chem 2025; 90:1934-1939. [PMID: 39854173 DOI: 10.1021/acs.joc.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
An N-heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.
Collapse
Affiliation(s)
- Zuquan Liu
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chenxing Li
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
13
|
Weng CY, Liu LG, Sun M, Lu X, Hong X, Ye LW, Zhou B. Enantioselective Synthesis of Axially Chiral Tetrasubstituted Alkenes by Copper-Catalyzed C(sp 2)-H Functionalization of Arenes with Vinyl Cations. Angew Chem Int Ed Engl 2025; 64:e202418254. [PMID: 39565118 DOI: 10.1002/anie.202418254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Axially chiral tetrasubstituted alkenes are of increasing value and interest in chemistry-related areas. However, their catalytic asymmetric synthesis remains elusive, owing to the high steric repulsion and relatively low conformational stability. Herein, we disclose the straightforward construction of atropisomeric tetrasubstituted alkenes by effective enantiocontrol in a reaction with vinyl cation intermediates. This copper-catalyzed enantioselective C(sp2)-H functionalization of sterically hindered (hetero)arenes with vinyl cations enables the efficient and atom-economical preparation of axially chiral acyclic tetrasubstituted styrenes and pyrrolyl ethylenes with high atroposelectivities. Importantly, this reaction represents the first example of the assembly of axially chiral alkenes via vinyl cations. Computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity, Z/E selectivity and enantioselectivity. The synthetic utility has been demonstrated by diverse product derivatizations, chiral organocatalyst synthesis, as well as further applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Chen-Yong Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Miao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
14
|
Xu K, Li HP, Ji YL, Peng C, Zhan G, Yang QQ, Han B. Sc-Catalyzed Asymmetric [2 + 2] Annulation of 2-Alkynylnaphthols with Dienes to Access Cyclobutene Frameworks. Org Lett 2025; 27:1006-1011. [PMID: 39815892 DOI: 10.1021/acs.orglett.4c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%. The simplicity of scaling up this process, coupled with the ease of converting these cyclobutene frameworks into a variety of substituted products, significantly enhances the synthetic utility of this method.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yan-Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
15
|
Cui Y, Wang YB, Liu HH, Xiang SH, Tan B. Organocatalytic Activation of Alkynes Enabled Remote Control of Atroposelectivity via Vinylidene para-Quinone Methides. J Am Chem Soc 2025; 147:3450-3458. [PMID: 39815732 DOI: 10.1021/jacs.4c14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Axially chiral o-VQMs have been extensively investigated as key intermediates to approach miscellaneous chiral structures. By sharp contrast, their structural isomers p-VQMs have not been previously documented. The major reason, which results in the significant delay, may ascribe to the inherent challenges in the enantioselective activation of alkynes in a remote manner. Herein, we demonstrate that the remote activation mechanism of para-hydroxyl-substituted arylacetylenes enables significant stereochemical induction, resulting in axially chiral aryl-alkenes with excellent enantiopurities. A series of control experiments are performed to elucidate the insights of this asymmetric transformation and to verify the involvement of multimolecular CPAs in the reaction process. These findings are expected to unlock a new feature for VQM chemistry and inspire investigation into the organocatalytic remote control of stereoselectivity.
Collapse
Affiliation(s)
- Yuan Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Xu D, Zhou G, Liu B, Jia S, Liu Y, Yan H. Catalytic Asymmetric Synthesis of Inherently Chiral Eight-Membered O-Heterocycles through Cross-[4+4] Cycloaddition of Quinone Methides. Angew Chem Int Ed Engl 2025; 64:e202416873. [PMID: 39540793 DOI: 10.1002/anie.202416873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Inherently chiral eight-membered rings embedded in tetraphenylene derivatives and hetero-analogues exhibit unique properties and allow diverse applications. A conceptually viable and straightforward approach to these frameworks is [4+4] cycloaddition, which still remains elusive. Herein, we describe the stereoselective cross-[4+4] cycloaddition of quinone methides (QMs), leading to the formation of oxa-analogues of tetraphenylene with exceptional chemo-, diastereo-, and enantioselectivity. The structures of these novel rigid eight-membered O-heterocycles were explored by single-crystal X-ray diffraction, and their stereochemical stability was elaborated through both density functional theory (DFT) calculations and thermal racemization experiments. The developed methodology exhibited broad substrate scope and the resulting cross-[4+4] cycloadducts could be readily transformed into valuable chiral building blocks. Our findings expand the library of inherently chiral medium-sized rings and also contribute to the advancement of asymmetric cross-[4+4] cycloadditions of quinone methides.
Collapse
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Guojie Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Bangli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
17
|
Huang S, Wen H, Li Y, Qin W, Wang P, Lan Y, Jia S, Yan H. Organocatalytic enantioselective synthesis of double S-shaped quadruple helicene-like molecules. Nat Commun 2025; 16:500. [PMID: 39779671 PMCID: PMC11711666 DOI: 10.1038/s41467-024-55590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.e.). The enantioselective synthesis of (P,P,P,P) and (M,M,M,M) configurational quadruple helical molecules can be achieved by modulating the structure of the catalyst. Density functional theory (DFT) calculations show that the reaction involves the formation of a duplex vinylidene ortho-quinone methide (VQM) intermediate and two successive cycloaddition reactions. Configurational stability studies elucidate the isomerization process between the isomers. In addition, the structural features and optical properties of the quadruple helicene-like molecules were investigated to explore their potential applications.
Collapse
Affiliation(s)
- Shengli Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yige Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Shiqi Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
18
|
Zhang JW, Zhang Y, Huang Y. Organocatalytic Atroposelective Synthesis of Axially Chiral Indolyl Ketosulfoxonium Ylides. Angew Chem Int Ed Engl 2025; 64:e202413102. [PMID: 39105615 DOI: 10.1002/anie.202413102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Despite recent advancements in the catalytic generation of axial chirality, reports on non-biaryl atropisomers remain limited because of the stringent steric requirements necessary to establish effective rotational brakes. Herein, we present a novel class of monoaryl atropisomers, indolyl ketosulfoxonium ylides, and describe an organocatalytic protocol for their synthesis. We discovered that a chiral phosphoric acid (CPA) serves as an effective catalyst for the highly enantioselective iodination of ortho-aminophenylethynyl sulfoxonium ylides. Under the optimized reaction conditions, a strong preference for the intended iodination process over the competing protonation was observed. Subsequently, intramolecular amide cyclization enabled the formation of sterically congested indole fragments. Furthermore, the synthetic utility of the products was demonstrated by showcasing versatile transformations into other chiral scaffolds with complete retention of optical purity.
Collapse
Affiliation(s)
- Ji-Wei Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
19
|
Li C, Chen XW, Liao LL, Gui YY, Yang JW, Zhang S, Yue JP, Zhou X, Ye JH, Lan Y, Yu DG. Nickel-Catalyzed Atroposelective Carbo-Carboxylation of Alkynes with CO 2: En Route to Axially Chiral Carboxylic Acids. Angew Chem Int Ed Engl 2025; 64:e202413305. [PMID: 39506458 DOI: 10.1002/anie.202413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Precise synthesis of carboxylic acids via catalytic carboxylation with CO2 is highly appealing. Although considerable advancements have been achieved in difunctionalizing carboxylation of unsaturated hydrocarbons, the asymmetric variants are conspicuously underdeveloped, particularly in addressing axially chiral alkenes. Herein, we report the first catalytic atroposelective carboxylation of alkynes with CO2. A variety of valuable axially chiral carboxylic acids are obtained with good yields and high chemo-, regio-, Z/E and enantio-selectivities. Notably, an unexpected anti-selective carbo-carboxylation is observed in the sp2-hybrid carbo-electrophile-initiated reductive carboxylation of alkynes. Mechanistic studies including DFT calculation elucidate the origin of chiral induction and anti-selectivity in vinyl-carboxylation of alkynes.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shuo Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiangge Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
20
|
Chen HH, Chen YB, Gao JZ, Ye LW, Zhou B. Copper-Catalyzed Enantioselective Dehydro-Diels-Alder Reaction: Atom-Economical Synthesis of Axially Chiral Carbazoles. Angew Chem Int Ed Engl 2024; 63:e202411709. [PMID: 39267546 DOI: 10.1002/anie.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The dehydro-Diels-Alder (DDA) reaction is a powerful method for the construction of aromatic compounds. However, the enantioselective DDA reaction has been rarely developed, probably due to the competitive thermal reaction. Herein, we report a copper-catalyzed enantioselective DDA reaction through vinyl cation pathway. The reaction leads to the atom-economical synthesis of axially chiral phenyl and indolyl carbazoles in generally excellent yields with good to excellent atroposelectivities. This methodology represents the first example of non-noble metal-catalyzed enantioselective DDA reaction. Notably, new chiral ligand and organocatalyst derived from the constructed axially chiral carbazole are demonstrated to be useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Hua-Hong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jun-Zhe Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
21
|
Wang YB, Liu W, Li T, Lu Y, Yu YT, Liu HT, Liu M, Li P, Qian PC, Tang H, Guan J, Ye LW, Li L. Gold/HNTf 2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones. J Am Chem Soc 2024; 146:33804-33816. [PMID: 39614810 DOI: 10.1021/jacs.4c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Due to the inherent challenges posed by the linear coordination of gold(I) complexes, asymmetric gold-catalyzed processes remain challenging, particularly in the atroposelective synthesis of axially chiral skeletons. Except for extremely few examples of intramolecular annulations, the construction of axial chirality via asymmetric gold-catalyzed intermolecular alkyne transformation is still undeveloped. Herein, a gold/HNTf2-cocatalyzed asymmetric diazo-alkyne annulation is developed, allowing the atroposelective and divergent synthesis of chiral non-C2-symmetric biaryls and arylquinones in generally good to excellent yield (up to 93% yield) and enantioselectivity (up to 99% ee), with broad substrate scope. Notably, this work represents the first gold-catalyzed atroposelective construction in an intermolecular manner. More interestingly, this strategy is successfully extended to the first asymmetric construction of seven-membered-ring atropisomers bearing one carbon-centered chirality in excellent diastereoselectivity and high enantioselectivity (up to 93% ee and 50:1 dr). Remarkably, the utility of this methodology is further illustrated by the successful application of a representative axially chiral ligand in a series of enantioselective reactions. Importantly, the Brønsted acid as a proton-shuttle cocatalyst significantly promotes this asymmetric annulation. Additionally, the origin of enantioselectivity of this annulation and the role of HNTf2 are disclosed by density functional calculations and control experiments.
Collapse
Affiliation(s)
- Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ting Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yazhu Lu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yi-Tian Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Tao Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Meiwen Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hao Tang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jia Guan
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
23
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
24
|
Zhao Y, Yan LB, Liao LF, Wu GQ, Zhong XX, Liang C, Chen CH, Mo DL. Nitrogenation of Alkynes with Nitrones to Prepare Functionalized [1,4]Oxazinones through Csp-Csp 2 Bond Cleavage. Org Lett 2024; 26:9541-9546. [PMID: 39453832 DOI: 10.1021/acs.orglett.4c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Herein, we report a novel strategy of hypervalent iodine(III) compound-mediated selective Csp-Csp2 bond cleavage of alkynes and C═N/N-O bond cleavage of nitrones and recombination of C-C/C-O/C-N multiple bonds to access various functionalized [1,4]oxazinones bearing a vicinal carbon stereocenter in good yields and high diastereoselectivity. Mechanistic studies revealed that the reaction undergoes a domino [4 + 3] cycloaddition, 1,3-rearrangement of N-O bond, intramolecular cyclization, dearomatization, and rearomatization over four steps in a single flask. The present method features good functional group tolerance, broad substrate scope, and C-C/C═N/N-O multiple bonds cleavage and recombination.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Li-Bing Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Lin-Fen Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gui-Qing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xin-Xian Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chun-Hua Chen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
25
|
Liu T, Luo Y, Liu Y. Construction of fused heterocycles by visible-light induced dearomatization of nonactivated arenes. Org Biomol Chem 2024. [PMID: 39469871 DOI: 10.1039/d4ob01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
Collapse
Affiliation(s)
- Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
26
|
Yao CZ, Tu XQ, Zhao ZY, Fan SH, Jiang HJ, Li Q, Yu J. Enantioselective Organocatalyzed Cascade Dearomatizing Spirocycloaddition Reactions of Indole-Ynones. Org Lett 2024; 26:8713-8718. [PMID: 39364785 DOI: 10.1021/acs.orglett.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
An intramolecular organocatalytic cascade dearomatizing spirocycloaddition reaction of indole-ynone compounds containing O-silyl-naphthol substituents has been developed with the use of a chiral bifunctional thiourea. This process was able to provide various structurally diverse polycyclic spiroindolines in high yields (up to 98%) with excellent stereoselectivities (>20:1 dr, up to 98% ee) involving the formation of carbonylvinylidene ortho-quinone methide intermediates.
Collapse
Affiliation(s)
- Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Zi-Yuan Zhao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Sheng-Hui Fan
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|
27
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
28
|
Ma K, Qi T, Hu L, Chen C, Wang W, Li J, Peng C, Zhan G, Han B. Atroposelective Synthesis of Biaryl N-Oxides via Cu-Catalyzed De Novo Heteroaromatic N-Oxide Ring Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405743. [PMID: 39120101 PMCID: PMC11515923 DOI: 10.1002/advs.202405743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Heteroaromatic N-oxides, renowned for their highly polar N─O bond and robust structure, exhibit significant bioactivities and have played a pivotal role in various drug development projects since the discovery of Minoxidil. Moreover, heteroaromatic N-oxides, featuring axially chiral biaryl frameworks, are indispensable as Lewis base catalysts and ligands in organic synthesis. Despite their importance, synthesizing these chiral compounds is challenging, necessitating chiral starting materials or resolution processes. Catalytic strategies rely on the functionalization of heteroaromatic N-oxide compounds, leading to products with a relatively limited skeletal diversity. This study introduces a Cu-catalyzed atroposelective method for synthesizing biaryl N-oxides via de novo heteroaromatic N-oxide ring formation. This mild and efficient approach achieves excellent stereoselectivities (up to 99:1 er), enabling the production of a wide array of N-oxides with novel heteroaromatic scaffolds. The axially chiral N-oxide product 3f demonstrates high stereoselectivity and recyclability as a Lewis base catalyst. Additionally, product 3e exhibits promising therapeutic efficacy against triple-negative breast cancer, with IC50 values of 4.8 and 5.2 µm in MDA-MB-231 and MDA-MB-468 cells, respectively. This research not only advances the synthesis of challenging chiral heteroaromatic N-oxides but also encourages further exploration of N-oxide entities in the discovery of bioactive small molecules.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Ting Qi
- Anti‐Infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Lei Hu
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Wan Wang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Jun‐Long Li
- Anti‐Infective Agent Creation Engineering Research Centre of Sichuan ProvinceSichuan Industrial Institute of AntibioticsSchool of PharmacyChengdu UniversityChengdu610106China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine ResourcesHospital of Chengdu University of Traditional Chinese MedicineSchool of PharmacyChengdu University of Traditional Chinese MedicineChengdu611137China
| |
Collapse
|
29
|
Roper NJ, Campbell ADG, Waddell PG, Brown AK, Ermanis K, Armstrong RJ. A stereodivergent multicomponent approach for the synthesis of C-N atropisomeric peptide analogues. Chem Sci 2024:d4sc04700a. [PMID: 39323517 PMCID: PMC11418089 DOI: 10.1039/d4sc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
A four-component Ugi reaction is described for the stereoselective synthesis of novel C-N atropisomeric peptide analogues. Using this approach, a combination of simple, readily available starting materials (ortho-substituted anilines, aldehydes, carboxylic acids and isocyanides) could be combined to access complex products possessing both central and axial chirality in up to 92% yield and >95 : 5 d.r. Variation of the reaction temperature enabled the development of stereodivergent reactions capable of selectively targeting either diastereoisomer of a desired product from a single set of starting materials with high levels of stereocontrol. Detailed experimental and computational studies have been performed to probe the reaction mechanism and stereochemical outcome of these reactions. Preliminary studies show that novel atropisomeric scaffolds prepared using this method display inhibitory activity against M. tuberculosis with a significant difference in activity observed between different atropisomers.
Collapse
Affiliation(s)
- Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Aaron D G Campbell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Alistair K Brown
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Kristaps Ermanis
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
30
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
31
|
Cen S, Li SS, Zhao Y, Zhao MX, Zhang Z. Catalytic Asymmetric Synthesis of Unnatural Axially Chiral Biaryl δ-Amino Acid Derivatives via a Chiral Phenanthroline-Potassium Catalyst-Enabled Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202407920. [PMID: 38877853 DOI: 10.1002/anie.202407920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 07/31/2024]
Abstract
Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.
Collapse
Affiliation(s)
- Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shan-Shan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
32
|
Li K, Zhao Z, Qin W, Liu Y, Yan H. Catalytic asymmetric construction of bridged bicyclo[ m.3.1] rings using an intramolecular Diels-Alder reaction. Chem Commun (Camb) 2024; 60:9570-9573. [PMID: 39139075 DOI: 10.1039/d4cc02850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we presented an enantioselective intramolecular Diels-Alder (IMDA) reaction with vinyl branched vinylidene ortho-quinone methide (VQM). The control of site selectivity in the IMDA reaction led to both chiral bridged bicyclo[4.3.1] and [5.3.1] architectures with high isolated yields (up to 85%) and excellent enantioselectivities (up to 97% ee).
Collapse
Affiliation(s)
- Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hailong Yan
- Chongqing University FuLing Hospital, Chongqing University, Chongqing 408000, P. R. China.
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
33
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
34
|
Zhao Z, Li Y, Jia S, Peng L, Zhang Z, Wu F, Wang P, Qin W, Lan Y, Yan H. Catalytic asymmetric functionalization and dearomatization of thiophenes. Chem Sci 2024:d4sc03530e. [PMID: 39156933 PMCID: PMC11325187 DOI: 10.1039/d4sc03530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
The asymmetric synthesis of thiophene-derived compounds, including catalytic asymmetric dearomatization of thiophene and atroposelective synthesis of benzothiophene derivatives, has rarely been reported. In this work, the asymmetric transformation of the thiophene motif is investigated. Through the rational design of substrates with a thiophene structure, by using the vinylidene ortho-quinone methide (VQM) intermediate as a versatile tool, axially chiral naphthyl-benzothiophene derivatives and thiophene-dearomatized chiral spiranes were obtained in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yingxin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Shiqi Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chongqing University FuLing Hospital, Chongqing University Chongqing 408000 P. R. China
| | - Zian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 400030 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
35
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Shikari A, Parida C, Chandra Pan S. Catalytic Asymmetric Dearomatization of 2,3-Disubstituted Indoles by a [4 + 2] Cycloaddition Reaction with In Situ Generated Vinylidene ortho-Quinone Methides: Access to Polycyclic Fused Indolines. Org Lett 2024; 26:5057-5062. [PMID: 38489515 DOI: 10.1021/acs.orglett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A protocol of enantioselective dearomatization of 2,3-disubstituted indoles by an organocatalytic intermolecular (4 + 2) cycloaddition reaction with in situ generated vinylidene ortho-quinone methide has been documented. A wide range of polycyclic 2,3-fused indolines containing vicinal quaternary carbon stereocenters was readily prepared in high yields and with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
37
|
Wang Y, Huang Y, Bao X, Wei X, Wei S, Qu J, Wang B. Organocatalytic diastereo- and atropo-selective construction of eight-membered bridged (hetero)biaryls via asymmetric intramolecular [3 + 2] cycloaddition. Chem Sci 2024; 15:8880-8887. [PMID: 38873056 PMCID: PMC11168085 DOI: 10.1039/d4sc01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Yue Huang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xingfu Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Shiqiang Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Jingping Qu
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Baomin Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
38
|
Li X, Kong L, Yin S, Zhou H, Lin A, Yao H, Gao S. Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309706. [PMID: 38602437 PMCID: PMC11199998 DOI: 10.1002/advs.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lingyu Kong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shuxin Yin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
39
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
40
|
Zhou YQ, He KC, Zheng WH, Lv JF, He SM, Yu N, Yang YB, Liu LY, Jiang K, Wei Y. 1,5-Hydrogen atom transfer of α-iminyl radical cations: a new platform for relay annulation for pyridine derivatives and axially chiral heterobiaryls. Chem Sci 2024; 15:7502-7514. [PMID: 38784726 PMCID: PMC11110145 DOI: 10.1039/d4sc01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The exploitation of new reactive species and novel transformation modes for their synthetic applications have significantly promoted the development of synthetic organic methodology, drug discovery, and advanced functional materials. α-Iminyl radical cations, a class of distonic ions, exhibit great synthetic potential for the synthesis of valuable molecules. For their generation, radical conjugate addition to α,β-unsaturated iminium ions represents a concise yet highly challenging route, because the in situ generated species are short-lived and highly reactive and they have a high tendency to cause radical elimination (β-scission) to regenerate the more stable iminium ions. Herein, we report a new transformation mode of the α-iminyl radical cation, that is to say, 1,5-hydrogen atom transfer (1,5-HAT). Such a strategy can generate a species bearing multiple reactive sites, which serves as a platform to realize (asymmetric) relay annulations. The present iron/secondary amine synergistic catalysis causes a modular assembly of a broad spectrum of new structurally fused pyridines including axially chiral heterobiaryls, and exhibits good functional group tolerance. A series of mechanistic experiments support the α-iminyl radical cation-induced 1,5-HAT, and the formation of several radical species in the relay annulations. Various synthetic transformations of the reaction products demonstrate the usefulness of this relay annulation protocol for the synthesis of significant molecules.
Collapse
Affiliation(s)
- Yu-Qiang Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kui-Cheng He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei-Hao Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jing-Fang Lv
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Shi-Mei He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ning Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yun-Bo Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Lv-Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
41
|
Wang J, Pan D, Wang F, Yu S, Huang G, Li X. Pd-catalyzed asymmetric Larock reaction for the atroposelective synthesis of N─N chiral indoles. SCIENCE ADVANCES 2024; 10:eado4489. [PMID: 38728391 PMCID: PMC11086601 DOI: 10.1126/sciadv.ado4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
Atropisomeric indoles defined by a N─N axis are an important class of heterocycles in synthetic and medicinal chemistry and material sciences. However, they remain heavily underexplored due to limited synthetic methods and challenging stereocontrol over the short N─N bonds. Here, we report highly atroposelective access to N─N axially chiral indoles via the asymmetric Larock reaction. This protocol leveraged the powerful role of chiral phosphoramidite ligand to attenuate the common ligand dissociation in the original Larock reaction, forming N─N chiral indoles with excellent functional group tolerance and high enantioselectivity via palladium-catalyzed intermolecular annulation between readily available o-iodoaniline and alkynes. The multifunctionality in the prepared chiral indoles allowed diverse post-coupling synthetic transformations, affording a broad array of functionalized chiral indoles. Experimental and computational studies have been conducted to explore the reaction mechanism, elucidating the enantio-determining and rate-limiting steps.
Collapse
Affiliation(s)
- Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, (China)
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
| | - Songjie Yu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, (China)
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, (China)
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, (China)
| |
Collapse
|
42
|
Lian PF, Wang Y, Li ZH, Zhang SY, Duan A, Bai HY. Enantioselective Synthesis of Axially Chiral Sulfone-Containing Styrenes Based on Ion-Exchange Strategy. Org Lett 2024; 26:3498-3502. [PMID: 38661476 DOI: 10.1021/acs.orglett.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A novel ion exchange strategy has been developed to enable the asymmetric construction of axially chiral sulfone-containing styrenes. This approach provides a practical synthesis pathway for various axially chiral sulfone-containing styrenes with good yields, exceptional enantioselectivities, and nearly complete E/Z selectivities. Additionally, the reaction mechanism is elucidated in detail through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ying Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing 401120, China
| |
Collapse
|
43
|
Meher R, Pan SC. Organocatalytic Asymmetric Dearomative Spirocyclization/Oxa-Michael Addition Sequence: Synthesis of Polycyclic Tetralones. Org Lett 2024; 26:3179-3183. [PMID: 38568111 DOI: 10.1021/acs.orglett.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, an organocatalytic asymmetric dearomative spirocyclization/oxa-Michael addition sequence with a newly designed substrate having two naphthol motifs has been developed. The reaction proceeds through in situ chiral vinylidene ortho-quinone methide (VQM) intermediate formation, dearomative spirocyclization of naphthol, and an oxa-Michael addition reaction. The densely functionalized tetralone products were formed in high yields with high diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Ramji Meher
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
44
|
Zhang C, Ye S, Wu J. Asymmetric Sulfonylation from a Reaction of Cyclopropan-1-ol, Sulfur Dioxide, and 1-(Alkynyl)naphthalen-2-ol. Org Lett 2024; 26:3321-3325. [PMID: 38598174 DOI: 10.1021/acs.orglett.4c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Asymmetric sulfonylation from a reaction of cyclopropan-1-ol, sulfur dioxide, and 1-(alkynyl)naphthalen-2-ol in the presence of a catalytic amount of organocatalyst at room temperature is developed. Axially chiral (S)-(E)-1-(1-(alkylsulfonyl)-2-arylvinyl)naphthalen-2-ols are generated in moderate to good yields with excellent enantioselectivity and regioselectivity under mild conditions. During this transformation, γ-keto sulfinate generated in situ from cyclopropan-1-ol and sulfur dioxide acts as the key intermediate.
Collapse
Affiliation(s)
- Chun Zhang
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
45
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
46
|
Li L, Ti W, Miao T, Ma J, Lin A, Chu Q, Gao S. Atroposelective Synthesis of Axially Chiral Diaryl Ethers by N-Heterocyclic-Carbene-Catalyzed Sequentially Desymmetric/Kinetic Resolution Process. J Org Chem 2024; 89:4067-4073. [PMID: 38391391 DOI: 10.1021/acs.joc.3c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We describe herein an N-heterocyclic-carbene-catalyzed atroposelective synthesis of axially chiral diaryl ethers. Through a sequentially enantioselective desymmetric process and a kinetic resolution process, the products could be constructed in good yields with excellent enantiopurities. Both alcohols and phenols were compatible with this catalytic system. The axially chiral carboxylic acids derived from the esters were proven to be potential chiral ligands for asymmetric synthesis, for example, Rh(III)-catalyzed enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Libo Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianshu Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Chu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
47
|
Wang CJ, Meng HJ, Tang Y, Chen J, Zhou L. Aromatic Amine and Chiral Phosphoric Acid Synergistic Catalyzed Cascade Reaction of Alkynylnaphthols with Aldehydes. Org Lett 2024; 26:1489-1494. [PMID: 38358098 DOI: 10.1021/acs.orglett.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A novel approach using aromatic amines and chiral phosphoric acids in a synergistic catalytic cascade reaction of 2-alkynylnaphthols with aldehydes has been established. This method offers a direct route to preparing flavanone analogues with excellent stereoselectivity. Mechanistic studies reveal a sequential process involving addition, elimination, cyclization, and hydrolysis in which aromatic amines and chiral phosphoric acids play key roles via imine-enamine and hydrogen bonding models.
Collapse
Affiliation(s)
- Chuan-Jin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hao-Jie Meng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
48
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
49
|
Yang QQ, Chen C, Yao D, Liu W, Liu B, Zhou J, Pan D, Peng C, Zhan G, Han B. Catalytic Atroposelective Synthesis of Axially Chiral Azomethine Imines and Neuroprotective Activity Evaluation. Angew Chem Int Ed Engl 2024; 63:e202312663. [PMID: 38032817 DOI: 10.1002/anie.202312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518060, Guangdong, China
| | - Wei Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dabo Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
50
|
Zhang HH, Li TZ, Liu SJ, Shi F. Catalytic Asymmetric Synthesis of Atropisomers Bearing Multiple Chiral Elements: An Emerging Field. Angew Chem Int Ed Engl 2024; 63:e202311053. [PMID: 37917574 DOI: 10.1002/anie.202311053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
With the rapid development of asymmetric catalysis, the demand for the enantioselective synthesis of complex and diverse molecules with different chiral elements is increasing. Owing to the unique features of atropisomerism, the catalytic asymmetric synthesis of atropisomers has attracted a considerable interest from the chemical science community. In particular, introducing additional chiral elements, such as carbon centered chirality, heteroatomic chirality, planar chirality, and helical chirality, into atropisomers provides an opportunity to incorporate new properties into axially chiral compounds, thus expanding the potential applications of atropisomers. Thus, it is important to perform catalytic asymmetric transformations to synthesize atropisomers bearing multiple chiral elements. In spite of challenges in such transformations, in recent years, chemists have devised powerful strategies under asymmetric organocatalysis or metal catalysis, synthesizing a wide range of enantioenriched atropisomers bearing multiple chiral elements. Therefore, the catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements has become an emerging field. This review summarizes the rapid progress in this field and indicates challenges, thereby promoting this field to a new horizon.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Tian-Zhen Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Si-Jia Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|