1
|
Monago C, Torre JADL, Delgado-Buscalioni R, Español P. Unraveling internal friction in a coarse-grained protein model. J Chem Phys 2025; 162:114115. [PMID: 40106402 DOI: 10.1063/5.0255498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Understanding the dynamic behavior of complex biomolecules requires simplified models that not only make computations feasible but also reveal fundamental mechanisms. Coarse-graining (CG) achieves this by grouping atoms into beads, whose stochastic dynamics can be derived using the Mori-Zwanzig formalism, capturing both reversible and irreversible interactions. In liquid, the dissipative bead-bead interactions have so far been restricted to hydrodynamic couplings. However, friction does not only arise from the solvent but, notably, from the internal degrees of freedom missing in the CG beads. This leads to an additional "internal friction" whose relevance is studied in this contribution. By comparing with all-atom molecular dynamics (MD), we neatly show that in order to accurately reproduce the dynamics of a globular protein in water using a CG model, not only a precise determination of elastic couplings and the Stokesian self-friction of each bead is required. Critically, the inclusion of internal friction between beads is also necessary for a faithful representation of protein dynamics. We propose to optimize the parameters of the CG model through a self-averaging method that integrates the CG dynamics with an evolution equation for the CG parameters. This approach ensures that selected quantities, such as the radial distribution function and the time correlation of bead velocities, match the corresponding MD values.
Collapse
Affiliation(s)
- Carlos Monago
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid 28015, Spain
| | - J A de la Torre
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid 28015, Spain
| | - R Delgado-Buscalioni
- Dept. Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Pep Español
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid 28015, Spain
| |
Collapse
|
2
|
Xu Q, Yang M, Ji J, Weng J, Wang W, Xu X. Impact of Nonnative Interactions on the Binding Kinetics of Intrinsically Disordered p53 with MDM2: Insights from All-Atom Simulation and Markov State Model Analysis. J Chem Inf Model 2024; 64:5219-5231. [PMID: 38916177 DOI: 10.1021/acs.jcim.3c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined tertiary structure but are essential players in various biological processes. Their ability to undergo a disorder-to-order transition upon binding to their partners, known as the folding-upon-binding process, is crucial for their function. One classical example is the intrinsically disordered transactivation domain (TAD) of the tumor suppressor protein p53, which quickly forms a structured α-helix after binding to its partner MDM2, with clinical significance for cancer treatment. However, the contribution of nonnative interactions between the IDP and its partner to the rapid binding kinetics, as well as their interplay with native interactions, is not well understood at the atomic level. Here, we used molecular dynamics simulation and Markov state model (MSM) analysis to study the folding-upon-binding mechanism between p53-TAD and MDM2. Our results suggest that the system progresses from the nascent encounter complex to the well-structured encounter complex and finally reaches the native complex, following an induced-fit mechanism. We found that nonnative hydrophobic and hydrogen bond interactions, combined with native interactions, effectively stabilize the nascent and well-structured encounter complexes. Among the nonnative interactions, Leu25p53-Leu54MDM2 and Leu25p53-Phe55MDM2 are particularly noteworthy, as their interaction strength is close to the optimum. Evidently, strengthening or weakening these interactions could both adversely affect the binding kinetics. Overall, our findings suggest that nonnative interactions are evolutionarily optimized to accelerate the binding kinetics of IDPs in conjunction with native interactions.
Collapse
Affiliation(s)
- Qianjun Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Maohua Yang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Xin Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Zinovjev K, Guénon P, Ramos-Guzmán CA, Ruiz-Pernía JJ, Laage D, Tuñón I. Activation and friction in enzymatic loop opening and closing dynamics. Nat Commun 2024; 15:2490. [PMID: 38509080 PMCID: PMC10955111 DOI: 10.1038/s41467-024-46723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Protein loop dynamics have recently been recognized as central to enzymatic activity, specificity and stability. However, the factors controlling loop opening and closing kinetics have remained elusive. Here, we combine molecular dynamics simulations with string-method determination of complex reaction coordinates to elucidate the molecular mechanism and rate-limiting step for WPD-loop dynamics in the PTP1B enzyme. While protein conformational dynamics is often represented as diffusive motion hindered by solvent viscosity and internal friction, we demonstrate that loop opening and closing is activated. It is governed by torsional rearrangement around a single loop peptide group and by significant friction caused by backbone adjustments, which can dynamically trap the loop. Considering both torsional barrier and time-dependent friction, our calculated rate constants exhibit very good agreement with experimental measurements, reproducing the change in loop opening kinetics between proteins. Furthermore, we demonstrate the applicability of our results to other enzymatic loops, including the M20 DHFR loop, thereby offering prospects for loop engineering potentially leading to enhanced designs.
Collapse
Affiliation(s)
- Kirill Zinovjev
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
| | - Paul Guénon
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Carlos A Ramos-Guzmán
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
- Instituto de Materiales Avanzados, Universidad Jaume I, 12071, Castelló, Spain
| | | | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Iñaki Tuñón
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
4
|
Yang Z, Zhou N, Jiang X, Wang L. Loop Evolutionary Patterns Shape Catalytic Efficiency of TRI101/201 for Trichothecenes: Insights into Protein-Substrate Interactions. J Chem Inf Model 2023; 63:6316-6331. [PMID: 37821422 DOI: 10.1021/acs.jcim.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Trichothecenes are highly toxic mycotoxins produced by Fusarium fungi, while TRI101/201 family enzymes play a crucial role in detoxification through acetylation. Studies on the substrate specificity and catalytic kinetics of TRI101/201 have revealed distinct kinetic characteristics, with significant differences observed in catalytic efficiency toward deoxynivalenol, while the catalytic efficiency for T-2 toxin remains relatively consistent. In this study, we used structural bioinformatics analysis and a molecular dynamics simulation workflow to investigate the mechanism underlying the differential catalytic activity of TRI101/201. The findings revealed that the binding stability between trichothecenes and TRI101/201 hinges primarily on a hydrophobic cage structure within the binding site. An intrinsic disordered loop, termed loop cover, defined the evolutionary patterns of the TRI101/201 protein family that are categorized into four subfamilies (V1/V2/V3/M). Furthermore, the unique loop displayed different conformations among these subfamilies' structures, which served to disrupt (V1/V2/V3) or reinforce (M) the hydrophobic cages. The disrupted cages enhanced the water exposure of the hydrophilic moieties of substrates like deoxynivalenol and thereby hindered their binding to the catalytic sites of V-type enzymes. In contrast, this water exposure does not affect substrates like T-2 toxin, which have more hydrophobic substituents, resulting in a comparable catalytic efficiency of both V- and M-type enzymes. Overall, our studies provide theoretical support for understanding the catalytic mechanism of TRI101/201, which shows how an intrinsic disordered loop could impact the protein-ligand binding and suggests a direction for rational protein design in the future.
Collapse
Affiliation(s)
- Zezheng Yang
- Taishan College, Shandong University, 266237 Qingdao, China
| | - Nana Zhou
- COFCO Nutrition and Health Research Institute, 102209 Beijing, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, 266237 Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
5
|
Schiavina M, Konrat R, Ceccolini I, Mateos B, Konrat R, Felli IC, Pierattelli R. Studies of proline conformational dynamics in IDPs by 13C-detected cross-correlated NMR relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107539. [PMID: 37632987 DOI: 10.1016/j.jmr.2023.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Intrinsically disordered proteins (IDPs) are significantly enriched in proline residues, which can populate specific local secondary structural elements called PPII helices, characterized by small packing densities. Proline is often thought to promote disorder, but it can participate in specific π·CH interactions with aromatic side chains resulting in reduced conformational flexibilities of the polypeptide. Differential local motional dynamics are relevant for the stabilization of preformed structural elements and can serve as nucleation sites for the establishment of long-range interactions. NMR experiments to probe the dynamics of proline ring systems would thus be highly desirable. Here we present a pulse scheme based on 13C detection to quantify dipole-dipole cross-correlated relaxation (CCR) rates at methylene CH2 groups in proline residues. Applying 13C-CON detection strategy provides exquisite spectral resolution allowing applications also to high molecular weight IDPs even in conditions approaching the physiological ones. The pulse scheme is illustrated with an application to the 220 amino acids long protein Osteopontin, an extracellular cytokine involved in inflammation and cancer progression, and a construct in which three proline-aromatic sequence patches have been mutated.
Collapse
Affiliation(s)
- Marco Schiavina
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Ruth Konrat
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Irene Ceccolini
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna, Austria.
| | - Isabella C Felli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|