1
|
Dethe DH, Singha C, Siddiqui SA. Biomimetic Synthesis of Cucurbalsaminone A. Org Lett 2025; 27:3159-3163. [PMID: 40129016 DOI: 10.1021/acs.orglett.5c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Cucurbalsaminones, notable for their unique 5/6/3/6/5-fused pentacyclic triterpenoid structure, are potent inhibitors of P-glycoprotein. In this study, we propose a biosynthetic pathway starting from lanosterol, aiming to elucidate how these types of complex structures are synthesized by nature. Based on this, we present the first synthesis of cucurbalsaminone A in a biomimetic fashion. This synthesis emphasizes key steps including allylic oxidation/olefin isomerization, Lewis acid-mediated sequential migration of Me and H, and the oxa-di-π-methane rearrangement.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chirantan Singha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Salman A Siddiqui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Dethe DH, Siddiqui SA, Singha C. Biomimetic syntheses of kadcoccitane H and kadcotrione C methyl ester. Chem Sci 2025; 16:6099-6103. [PMID: 40078608 PMCID: PMC11894464 DOI: 10.1039/d5sc00669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Kadcotriones and kadcoccitanes, renowned for their intricate 6/6/5-tricyclic and 6/6/5/6-tetracyclic ring systems, respectively, exhibit promising biological activities. This work proposes a biosynthetic pathway that elucidates how nature synthesizes these triterpenoids from lanosterol. Inspired by this pathway, we present the first biomimetic syntheses of kadcoccitane H and kadcotrione C methyl ester. These syntheses showcase key transformations including olefin transposition, a biomimetic ring contraction/expansion, SeO2 mediated one-pot allylic oxidation/isomerization-elimination/allylic oxidation cascade, regioselective dihydroxylation of sterically hindered double bond, unusual POCl3 mediated cleavage of diol and Still-Gennari olefination.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Salman A Siddiqui
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| | - Chirantan Singha
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208016 India
| |
Collapse
|
3
|
An PP, Huang H, Ru SJ, Gao Y, Ren YH, Gao K, Zhou H, Zhou B, Yue JM. Intriguing steroid glycosides for cancer therapy by suppressing the DNA damage response and mTOR/S6K signaling pathways. Bioorg Chem 2024; 151:107619. [PMID: 39024806 DOI: 10.1016/j.bioorg.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Two rare 8-hydroxysteroid glycosides (6-7), and their downstream metabolites (1-5) with an unprecedented 6/6/5/5/5-pentacyclic scaffold, together with seven known analogues (8-14) were isolated from the twigs and leaves of Strophanthus divaricatus. Their structures were fully assigned by analysis of the spectroscopic and ECD data, NMR calculations, X-ray crystallographic study, and chemical methods. In addition, the inhibitory effects of 1-14 on liver and lung cancer cell lines were evaluated, and preliminary structure-activity relationship was discussed. Data-independent acquisition (DIA)-based quantitative proteomic analysis and biological verification of H1299 cells suggested that this family of compounds may play an anticancer role by suppressing both DNA damage response (DDR) and mTOR/S6K signaling pathways.
Collapse
Affiliation(s)
- Pei-Pei An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Su-Jie Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jian-Min Yue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
4
|
Chen C, Liu L, Ye S, Li J, Wu L, Li J, Jia H, Long Y. New steroids from mangrove-associated fungus Trichoderma asperellum SCNU-F0048. Steroids 2024; 208:109449. [PMID: 38851553 DOI: 10.1016/j.steroids.2024.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Chemical investigation of the fungus Trichoderma asperellum SCNU-F0048 led to the discovery of two new steroids, ergosta-4,6,8 (14),22-tetraen-3-(3'-methyl-4'-hydroxyl-γ-butenolide) (1) and camphosterol B (2), as well as two known compounds, i.e. stigmasta-4,6,8(14),22-tetraen-3-one (3) and 4-hydroxy-17- methylincisterol (4). Their structures were elucidated by extensive nuclear mangnetic resonance, spectrum analysis and single crystal X-ray diffraction analysis. Bioassay disclosed that compound 1 showed strong cytotoxicity to a panel of tumor cell lines. Moreover, compounds 1 and 2 showed excellent antifungal activity against Penicillium italicum with IC50 values of 0.016 and 0.022 μM, respectively.
Collapse
Affiliation(s)
- Chen Chen
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lingling Liu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Siyao Ye
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jialin Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li Wu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Junsen Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Hao Jia
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yuhua Long
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Dembitsky VM. Naturally Occurring Norsteroids and Their Design and Pharmaceutical Application. Biomedicines 2024; 12:1021. [PMID: 38790983 PMCID: PMC11117879 DOI: 10.3390/biomedicines12051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of this review is to introduce readers to the fascinating class of lipid molecules known as norsteroids, exploring their distribution across various biotopes and their biological activities. The review provides an in-depth analysis of various modified steroids, including A, B, C, and D-norsteroids, each characterized by distinct structural alterations. These modifications, which range from the removal of specific methyl groups to changes in the steroid core, result in unique molecular architectures that significantly impact their biological activity and therapeutic potential. The discussion on A, B, C, and D-norsteroids sheds light on their unique configurations and how these structural modifications influence their pharmacological properties. The review also presents examples from natural sources that produce a diverse array of steroids with distinct structures, including the aforementioned A, B, C, and D-nor variants. These compounds are sourced from marine organisms like sponges, soft corals, and starfish, as well as terrestrial entities such as plants, fungi, and bacteria. The exploration of these steroids encompasses their biosynthesis, ecological significance, and potential medical applications, highlighting a crucial area of interest in pharmacology and natural product chemistry. The review emphasizes the importance of researching these steroids for drug development, particularly in addressing diseases where conventional medications are inadequate or for conditions lacking sufficient therapeutic options. Examples of norsteroid synthesis are provided to illustrate the practical applications of this research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
6
|
Zhao Z, Deng G, Li CC. Synthesis of the [6-6-7-5-5] Pentacyclic Core of Calyciphylline N. Org Lett 2024; 26:2238-2242. [PMID: 38442391 DOI: 10.1021/acs.orglett.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A new approach for the concise 11-step synthesis of the [6-6-7-5-5] BCDEF pentacyclic core of calyciphylline N is described. A type II [5 + 2] cycloaddition was employed to construct the strained BCD skeleton, which encompasses the challenging bicyclo[2.2.2] and bicyclo[4.3.1] ring systems. With a regio- and diastereoselective Lu's [3 + 2] cycloaddition, followed by intramolecular aldol cyclization and elimination, the desired [5-5]-fused EF ring system has been successfully installed, resulting in the complete carbocyclic skeleton of calyciphylline N.
Collapse
Affiliation(s)
- Zhiwen Zhao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Guowei Deng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Gui J. Bioinspired Skeletal Reorganization Approach for the Synthesis of Steroid Natural Products. Acc Chem Res 2024. [PMID: 38301249 DOI: 10.1021/acs.accounts.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSteroids, termed "keys to life" by Rupert Witzmann, have a wide variety of biological activities, including anti-inflammatory, antishock, immunosuppressive, stress-response-enhancing, and antifertility activities, and steroid research has made great contributions to drug discovery and development. According to a chart compiled by the Njardarson group at the University of Arizona, 15 of the top 200 small-molecule drugs (by retail sales in 2022) are steroid-related compounds. Therefore, synthetic and medicinal chemists have long pursued the chemical synthesis of steroid natural products (SNPs) with diverse architectures, and vital progress has been achieved, especially in the twentieth century. In fact, several chemists have been rewarded with a Nobel Prize for original contributions to the isolation of steroids, the elucidation of their structures and biosynthetic pathways, and their chemical synthesis. However, in contrast to classical steroids, which have a 6/6/6/5-tetracyclic framework, rearranged steroids (i.e., abeo-steroids and secosteroids), which are derived from classical steroids by reorganization of one or more C-C bonds of the tetracyclic skeleton, have started to gain attention from the synthetic community only in the last two decades. These unique rearranged steroids have complex frameworks with high oxidation states, are rich in stereogenic centers, and have attractive biological activities, rendering them popular yet formidable synthetic targets.Our group has a strong interest in the efficient synthesis of SNPs and, drawing inspiration from nature, we have found that bioinspired skeletal reorganization (BSR) is an efficient strategy for synthesizing challenging rearranged steroids. Using this strategy, we recently achieved concise syntheses of five different kinds of SNPs (cyclocitrinols, propindilactone G, bufospirostenin A, pinnigorgiol B, and sarocladione) with considerably rearranged skeletons; our work also enabled us to reassign the originally proposed structure of sarocladione. In this Account, we summarize the proposed biosyntheses of these SNPs and describe our BSR approach for the rapid construction of their core frameworks. In the work described herein, information gleaned from the proposed biosyntheses allowed us to develop routes for chemical synthesis. However, in several cases, the synthetic precursors that we used for our BSR approach differed substantially from the intermediates in the proposed biosyntheses, indicating the considerable challenges we encountered during this synthetic campaign. It is worth mentioning that during our pursuit of concise and scalable syntheses of these natural products, we developed two methods for accessing synthetically challenging targets: a method for rapid construction of bridged-ring molecules by means of point-to-planar chirality transfer and a method for efficient construction of macrocyclic molecules via a novel ruthenium-catalyzed endoperoxide fragmentation. Our syntheses vividly demonstrate that consideration of natural product biosynthesis can greatly facilitate chemical synthesis, and we expect that the BSR approach will find additional applications in the efficient syntheses of other structurally complex steroid and terpenoid natural products.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Zhang Z, Sun Z, Song J, Guo H, Wang Y, Hu X. Construction of the A-B-C Ring of Simplicissin through an Oxidative Dearomatization/Iodination/[3+2] Annulation Cascade. Org Lett 2023. [PMID: 38018904 DOI: 10.1021/acs.orglett.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
As an attractive DMOA-derived spiromeroterpenoid, simplicissin shares a common A-B-C ring skeleton with other natural analogues. On the basis of the development of an oxidative dearomatization/iodination/[3+2] annulation cascade, a concise synthetic pathway to the A-B-C ring of simplicissin has been successfully established, and the substrate generality of the novel oxidative dearomatization/iodination/[3+2] annulation cascade has been checked.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Zezhong Sun
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Jianing Song
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Hao Guo
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Yunxia Wang
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Xiangdong Hu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| |
Collapse
|
9
|
Lu JB, Xu XQ, Ruan ZS, Liu K, Liang RX, Jia YX. Pd-Catalyzed Intramolecular Dearomative [4 + 2] Cycloaddition of Naphthalenes with Arylalkynes. Org Lett 2023; 25:8139-8144. [PMID: 37934112 DOI: 10.1021/acs.orglett.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Pd-catalyzed intramolecular dearomative [4 + 2] cycloaddition reaction of naphthalenes with arylalkynes is developed. The protocol provides a straightforward method to access a range of polycyclic dihydronaphthalenes containing two vicinal all-carbon stereocenters in moderate yields under mild conditions in an air atmosphere. The deuterium labeling experiment suggests a pathway involving electrophilic dearomatization followed by Friedel-Crafts cyclization. Several synthetic transformations of the product were conducted to demonstrate the utility of this reaction.
Collapse
Affiliation(s)
- Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Zi-Sheng Ruan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Kai Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
10
|
Dembitsky VM. Steroids Bearing Heteroatom as Potential Drugs for Medicine. Biomedicines 2023; 11:2698. [PMID: 37893072 PMCID: PMC10604304 DOI: 10.3390/biomedicines11102698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Heteroatom steroids, a diverse class of organic compounds, have attracted significant attention in the field of medicinal chemistry and drug discovery. The biological profiles of heteroatom steroids are of considerable interest to chemists, biologists, pharmacologists, and the pharmaceutical industry. These compounds have shown promise as potential therapeutic agents in the treatment of various diseases, such as cancer, infectious diseases, cardiovascular disorders, and neurodegenerative conditions. Moreover, the incorporation of heteroatoms has led to the development of targeted drug delivery systems, prodrugs, and other innovative pharmaceutical approaches. Heteroatom steroids represent a fascinating area of research, bridging the fields of organic chemistry, medicinal chemistry, and pharmacology. The exploration of their chemical diversity and biological activities holds promise for the discovery of novel drug candidates and the development of more effective and targeted treatments.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|