1
|
Guo H, Loh CCJ. Noncovalent interactions: An emerging focal point in stereoselective catalytic carbohydrate synthesis. Carbohydr Res 2025; 552:109458. [PMID: 40132292 DOI: 10.1016/j.carres.2025.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The incorporation of frontier synthetic concepts into stereoselective carbohydrate synthesis is gaining significant traction. In the last five years, there are increasing reports documenting that the consideration of weak non-covalent interactions (NCIs) constitutes a vital factor in steering the anomeric and site-selectivity, as well as in activating difficult glycosylations. In light of blossoming developments on this front, we present a brief overview of recent case studies that involve the harnessing of hydrogen bonding (HB), halogen bonding (XB), chalcogen bonding (ChB) and π-interactions. These NCIs represent a considerable palette of classical/non-classical weak interactions that is of current interest to the broad synthesis community. Significantly, a close mechanistic analysis often revealed that NCIs were instrumental in dictating the final stereoselectivity outcome of many glycosylation pathways. We are optimistic that by expanding the focal point from purely glycosyl substrate modifications towards tweaking catalytic NCIs at the supramolecular level of chemical glycosylations, this emerging concept offers new levers of stereoselectivity control beyond classical stereoelectronic and steric considerations.
Collapse
Affiliation(s)
- Hao Guo
- College of Chemistry and Materials Science, And Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Charles C J Loh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Ma J, Yan W, Chen X, Zhen W, Yu J, Wang R, Xu C. Photoinduced Diastereoselective and Stereodivergent Synthesis of C-Styryl Glycosides. Org Lett 2025. [PMID: 40379619 DOI: 10.1021/acs.orglett.5c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
A novel and efficient method for the stereoselective and stereodivergent synthesis of both unprotected and protected styryl C-glycosides through the reaction of sodium glycosyl sulfinate and hypervalent styryl iodine reagents is described. Using 2-bromo-9-fluorenone as a photocatalyst, C-styryl glycosides with an E configuration were selectively obtained. Furthermore, the introduction of a newly designed iridium-based catalyst enabled the selective formation of glycosides predominantly in the Z configuration. Mechanistic studies reveal the glycosyl radical is involved in the transformation.
Collapse
Affiliation(s)
- Jialu Ma
- Key Laboratory of Molecular Synthesis and Functionalization Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Weitao Yan
- Key Laboratory of Molecular Synthesis and Functionalization Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinyu Chen
- Key Laboratory of Molecular Synthesis and Functionalization Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenxu Zhen
- Key Laboratory of Molecular Synthesis and Functionalization Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jin Yu
- Glycosciences Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London W12 0NN, U.K
| | - Ruo Wang
- Shengli Clinical Medical College of Fujian Medical University, Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou University, Fuzhou 350001, China
| | - Chunfa Xu
- Key Laboratory of Molecular Synthesis and Functionalization Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| |
Collapse
|
3
|
Tian DY, Zhao WP, Xu ZY. Mechanism and Origin of Nickel-Catalyzed Decarbonylative Construction of C(sp 2)-C(sp 3) Bonds from Carboxylic Acids and Their Derivatives. J Org Chem 2025; 90:4808-4818. [PMID: 40163894 DOI: 10.1021/acs.joc.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nickel-catalyzed arylation of carboxylic acids provides a ligand-controlled chemoselectivity-switchable method for the construction of C(sp2)-C(sp3) bonds. Here, we employed density functional theory to provide a detailed understanding of the mechanism and origin of nickel-catalyzed ligand-controlled carbonyl transformation. This reaction generates decarbonylation products through oxidative addition, activation of C-C bonds, decarbonylation, binding of alkyl radicals with Ni(III) complexes, and final reduction elimination step. The activation of C-C bonds in aromatic carboxylate esters is more favorable than C-O bond activation because of the interaction between the nickel catalyst and the π orbitals of the substrate's aromatic moiety during C-C bond activation. The induction effect of the ligand and the carbonyl group together determines the transfer tendency of the carbonyl group.
Collapse
Affiliation(s)
- Dan-Yan Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei-Peng Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zheng-Yang Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Chen H, Rueping M. Facile, general allylation of unactivated alkyl halides via electrochemically enabled radical-polar crossover. Chem Sci 2025; 16:6317-6324. [PMID: 40083972 PMCID: PMC11898270 DOI: 10.1039/d4sc07923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Electrochemically driven carbon-carbon formation is receiving considerable interest in organic synthesis. In this study, we present an electrochemically driven method for the formation of C(sp3)-C(sp3) bonds using readily available allylic carbonates, as well as primary, secondary, and tertiary alkyl bromides as electrophiles. This approach offers a highly selective route for synthesizing a broad range of allylic products with excellent functional group tolerance, all without the need for transition metal catalysts. Remarkably, this method also enables the smooth late-stage functionalization of various natural product- and drug-derived substrates, yielding the corresponding complex allylalkanes.
Collapse
Affiliation(s)
- Haifeng Chen
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
5
|
Wang J, Zhou F, Xu Y, Zhang L. Recent Advances in Organic Photocatalyst-Promoted Carbohydrate Synthesis and Modification under Light Irradiation. Chem Asian J 2025; 20:e202401114. [PMID: 39745292 DOI: 10.1002/asia.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/06/2024] [Indexed: 01/14/2025]
Abstract
Photoredox catalysis has been developed as a sustainable and eco-friendly catalytic strategy, which might provide innovative solutions to solve the current synthetic challenges and barriers in carbohydrate chemistry. During the last few decades, the study of organic photocatalyst-promoted carbohydrate synthesis and modification has received significant attention, which provides an excellent and inexpensive metal-free alternative to photoredox catalysis as well as introduces a new fastest-growing era to access complex carbohydrates simply. In this review, we aim to provide an overview of organic photocatalyst-promoted carbohydrate synthesis and modification under light irradiation, which is expected to provide new directions for further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| |
Collapse
|
6
|
Xu C, Zhang Q, Yusupu Y. Radical Strategy Towards N-glycosides: Current Advances and Future Prospects. Chembiochem 2025; 26:e202400864. [PMID: 39887831 DOI: 10.1002/cbic.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
N-glycosides exhibit diverse biological and pharmacological activities, making their efficient synthesis crucial for both biological research and drug development. Traditional acid-promoted N-glycosylation methods, which rely on the formation of oxocarbenium intermediates, often face significant challenges. These methods are water-sensitive and typically require neighboring group participation to achieve high selectivity. Furthermore, they depend on acid activation, rendering them incompatible with alkyl amine. Additionally, low-nucleophilicity amides often need to be converted into their TMS-derivatives to enhance reactivity, limiting the direct use of such substrates. In contrast, radical-based strategies have emerged as a promising alternative, addressing many of these limitations and leading to notable advances in N-glycosylation. This review explores the unique properties of N-glycosides, the inherent challenges of traditional N-glycosylation techniques, and the transformative advantages offered by radical-based approaches. Specifically, it highlights recent advancements in radical-mediated N-glycosylation, including photoredox radical strategies, radical/ionic hybrid approaches, and metallaphotoredox catalysis, accompanied by a detailed discussion of the underlying mechanisms. Finally, the ongoing challenges and potential future directions of N-glycoside synthesis using radical strategies are presented.
Collapse
Affiliation(s)
- Chunfa Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qinshuo Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
| | - Yimuran Yusupu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
| |
Collapse
|
7
|
Wang JB, Shen Y, Yan QL, Kong WJ, Nian Y, Shang M. Modular Access to C2'-Aryl/Alkenyl Nucleosides with Electrochemical Stereoselective Cross-Coupling. Angew Chem Int Ed Engl 2025; 64:e202418806. [PMID: 39620453 DOI: 10.1002/anie.202418806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Chemically modified oligonucleotides have garnered significant attention in medicinal chemistry, chemical biology, and synthetic biology due to their enhanced stability in vivo compared to naturally occurring oligonucleotides. However, current methods for synthesizing modified nucleosides, particularly at the C2'-position, are limited in terms of efficiency, modularity, and selectivity. Herein, we report a new approach for the synthesis of highly functionalized C2'-α-aryl/alkenyl nucleosides via an electrochemical nickel-catalyzed cross-coupling of 2'-bromo nucleosides with a variety of (hetero)aryl and alkenyl iodides. This method affords a diverse array of C2'- α-aryl/alkenyl nucleosides with excellent stereoselectivity, broad substrate scope, and good functional group compatibility. We further synthesized oligonucleotides incorporating C2'-aryl-modified thymidine moieties and demonstrated that their annealed double-stranded DNAs exhibit decreased melting temperatures (Tm). Additionally, oligonucleotides with C2'-aryl modifications at the 3' end showed enhanced resistance to 3'-exonuclease degradation and C2'-aryl modifications did not impede the cellular uptake process, highlighting the potential of these modified oligonucleotides for therapeutic applications.
Collapse
Affiliation(s)
- Jia-Bao Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yu Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qing-Long Yan
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan, 314102, Zhejiang, People's Republic of China
| | - Wei-Jun Kong
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, People's Republic of China
| | - Yong Nian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
8
|
Liu M, Liu F, Xiao H, Wang PY, Liu M, Ye XS, Xiong DC. 1-(2'-Hydroxy-2'-Methylpropionyl)Glycoside as a Versatile Glycosyl Donor for O-/C-Glycosylation. Chemistry 2025; 31:e202403534. [PMID: 39508325 DOI: 10.1002/chem.202403534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Herein, we developed a Lewis acid-mediated O-glycosylation and C-glycosylation protocol using stable glycosyl 2'-hydroxy-2'-methylpropionates as donors. These glycosylation reactions reached completion within 1 h at room temperature. The practicality of this protocol is characterized by their straightforward operation and efficient applicability to various substrates, including both disarmed and armed glycosyl donors, through the remote activation of easily accessible TMSOTf.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hui Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
9
|
Wang J, Zhou F, Xu Y, Zhang L. Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation. CHEM REC 2025; 25:e202400161. [PMID: 39727226 DOI: 10.1002/tcr.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry. Over the last few decades, Ir- and Ru-based organometallic photocatalysts have attracted significant interest because of their high stability, high-energy triplet state, strong visible-light absorption, long luminescence lifetime, and amenability to ligand modification. This review highlights the recent progress in the organometallic photocatalyst-promoted synthesis and modification of carbohydrates under photoirradiation, as well as the related benefits and drawbacks.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| |
Collapse
|
10
|
Wang J, Zhou F, Xu Y, Zhang L. Photocatalyst-free light-promoted carbohydrate synthesis and modification. Carbohydr Res 2024; 546:109304. [PMID: 39520807 DOI: 10.1016/j.carres.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Photoredox catalysis has recently emerged as a powerful approach for preparing oligosaccharides because it uses mild conditions, is compatible with partially or completely unprotected carbohydrate substrates, and exhibits impressive regio- and stereo-selectivity and high functional group tolerance. However, most catalytic photoredox reactions require an external photocatalyst (organic dye or expensive transition-metal complex) to deliver key glycosyl radicals. Several photocatalyst-free photocatalytic reactions that avoid the use of expensive metal salts or organic-dye additives have received significant attention. In this review, we highlight the most recent developments in photocatalyst-free light-promoted carbohydrate synthesis and modification, which is expected to inspire broad interest in further innovations in the green synthesis of saccharides.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China.
| |
Collapse
|
11
|
Xie H, Wang S, Shu XZ. C-OH Bond Activation for Stereoselective Radical C-Glycosylation of Native Saccharides. J Am Chem Soc 2024; 146:32269-32275. [PMID: 39545714 DOI: 10.1021/jacs.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Radical C-glycosylation presents a flexible and efficient method for synthesizing C-glycosides. Existing methods always require multistep processes for generating anomeric radicals. In this study, we introduce a streamlined approach to produce anomeric radicals through direct C-OH bond homolysis of unmodified saccharides, eliminating the need for protection, deprotection, or activation steps. These anomeric radicals selectively couple with activated alkenes, yielding C-glycosylation products with high stereoselectivity (>20:1). This method is applicable to a variety of native monosaccharides, such as l-arabinose, d-arabinose, d-xylose, l-xylose, d-galactose, β-d-glucose, α-d-glucose, and l-ribose, as well as oligosaccharides including α-lactose, d-(+)-melibiose, and acarbose. We also extend this approach to C-glycosylation of amino acid and peptide derivatives, and demonstrate a streamlined synthesis of an anti-inflammatory agent.
Collapse
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
12
|
Cheng G, Yang B, Han Y, Lin W, Tao S, Nian Y, Li Y, Walczak MA, Zhu F. Pd-Catalyzed Stereospecific Glycosyl Cross-Coupling of Reversed Anomeric Stannanes for Modular Synthesis of Nonclassical C-Glycosides. PRECISION CHEMISTRY 2024; 2:587-599. [PMID: 39611026 PMCID: PMC11600346 DOI: 10.1021/prechem.4c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 11/30/2024]
Abstract
Nonclassical C-glycosides, distinguished by their unique glycosidic bond connection mode, represent a promising avenue for the development of carbohydrate-based drugs. However, the accessibility of nonclassical C-glycosides hinders broader investigations into their structural features and modes of action. Herein, we present the first example of Pd-catalyzed stereospecific glycosylation of nonclassical anomeric stannanes with aryl or vinyl halides. This method furnishes desired nonclassical aryl and vinyl C-glycosides in good to excellent yields, while allowing for exclusive control of nonclassical anomeric configuration. Of significant note is the demonstration of the generality and practicality of this nonclassical C-glycosylation approach across more than 50 examples, encompassing various protected and unprotected saccharides, deoxy sugars, oligopeptides, and complex molecules. Furthermore, biological evaluation indicates that nonclassical C-glycosylation modifications of drug molecules can positively impact their biological activity. Additionally, extensive computational studies are conducted to elucidate the rationale behind differences in reaction reactivity, unveiling a transmetalation transition state containing silver (Ag) within a six-membered ring. Given its remarkable controllability, predictability, and consistently high chemical selectivity and stereospecificity regarding nonclassical anomeric carbon and Z/E configuration, the method outlined in this study offers a unique solution to the longstanding challenge of accessing nonclassical C-glycosides with exclusive stereocontrol.
Collapse
Affiliation(s)
- Guoqiang Cheng
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bo Yang
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Han
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Lin
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Siyuan Tao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yong Nian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yingzi Li
- Institute
of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Maciej A. Walczak
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Feng Zhu
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
14
|
Xie D, Zeng W, Yang J, Ma X. Visible-light-promoted direct desulfurization of glycosyl thiols to access C-glycosides. Nat Commun 2024; 15:9187. [PMID: 39448612 PMCID: PMC11502824 DOI: 10.1038/s41467-024-53563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
C-Glycosides are essential for the study of biological processes and the development of carbohydrate-based drugs. Despite the tremendous hurdles, glycochemists have often fantasized about the efficient, highly stereoselective synthesis of C-glycosides with the shortest steps under mild conditions. Herein, we report a desulfurative radical protocol to synthesize C-alkyl glycosides and coumarin C-glycosides under visible-light induced conditions without the need of an extra photocatalyst, in which stable and readily available glycosyl thiols that could be readily obtained from native sugars are activated in situ by pentafluoropyridine. The benefits of this procedure include high stereoselectivity, broad substrate scope, and easy handling. Mechanistic studies indicate that the in situ produced tetrafluoropyridyl S-glycosides form key electron donor-acceptor (EDA) complexes with Hantzsch ester (for C-alkyl glycosides) or Et3N (for coumarin C-glycosides), which, upon irradiation with visible light, trigger a cascade of glycosyl radical processes to access C-glycosides smoothly.
Collapse
Affiliation(s)
- Demeng Xie
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zeng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Yang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Ma
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
15
|
Ann A, Truong S, Peters J, Mootoo DR. Synthesis of alpha-Gal C-disaccharides. Bioorg Med Chem 2024; 112:117903. [PMID: 39236466 DOI: 10.1016/j.bmc.2024.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The synthesis of C-disaccharides of α-d-galactopyranosyl-(1 → 3)-d-galactopyranose (α-Gal), potential tools for studying the biology of α-Gal glycans, is described. The synthetic strategy, centers on the reaction of two easily available precursors 1,2-O-isopropylidene-d-glyceraldehyde and an α-C-glactosyl-E-crotylboronate, which affords a mixture of two diastereomeric anti-crotylation products. The stereoselectivity of this reaction was controlled with (R)- and (S)-TRIP catalysts, and the appropriate diastereomer was transformed to C-linked disaccharides of α-Gal, in which the aglycone segment comprised O-, C- and S-glycoside entities that can enable glycoconjugate synthesis.
Collapse
Affiliation(s)
- Alex Ann
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Steven Truong
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Jiwani Peters
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
16
|
Miyamoto Y, Murakami S, Sumida Y, Hirai G, Ohmiya H. Radical C-Glycosylation Using Photoexcitable Unprotected Glycosyl Borate. Chemistry 2024; 30:e202402256. [PMID: 38980084 DOI: 10.1002/chem.202402256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
We have developed radical C-glycosylation using photoexcitable unprotected glycosyl borate. The direct excitation of glycosyl borate under visible light irradiation enabled the generation of anomeric radical without any photoredox catalysts. The in situ generated anomeric radical was applicable to the radical addition such as Giese-type addition and Minisci-type reaction to introduce alkyl and heteroaryl groups at the anomeric position. In addition, the radical-radical coupling between the glycosyl borate and acyl imidazolide provided unprotected acyl C-glycosides.
Collapse
Affiliation(s)
- Yusuke Miyamoto
- Institute for Chemical Research Kyoto University, 611-0011, Gokasho, Uji, Kyoto, Japan
| | - Sho Murakami
- Institute for Chemical Research Kyoto University, 611-0011, Gokasho, Uji, Kyoto, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 101-0062, Kanda- Surugadai, Chiyoda-ku Tokyo, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582, Maidashi, Higashiku, Fukuoka, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research Kyoto University, 611-0011, Gokasho, Uji, Kyoto, Japan
| |
Collapse
|
17
|
Zhu P, Zhao Y, Ling S, Xu B, Liu H, Li X, Sun FG. Nickel-Catalyzed Desulfurative Cross-Coupling of Aryl Iodides with Heteroaromatic Thioethers via C-S Bond Cleavage. J Org Chem 2024; 89:12001-12009. [PMID: 39145751 DOI: 10.1021/acs.joc.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Herein, we present a Ni-catalyzed direct cross-coupling of heteroaromatic thioethers with aryl iodides via selective C(sp2)-S bond cleavage under reductive conditions, thereby providing various biaryl frameworks with high efficiency. Mechanistic studies suggested Mo(CO)6 played a crucial role in facilitating the activation of the C(sp2)-S bond. This protocol demonstrated a wide substrate scope, operational simplicity, and good functional group compatibility. Furthermore, the utility of this reaction was highlighted by facile scale-up and sequential modification of heteroaryl frameworks.
Collapse
Affiliation(s)
- Pingliang Zhu
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Yu Zhao
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Shaowen Ling
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Baolong Xu
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Liu
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Xinjin Li
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Feng-Gang Sun
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| |
Collapse
|
18
|
Ding W, Chen X, Sun Z, Luo J, Wang S, Lu Q, Ma J, Zhao C, Chen FE, Xu C. A Radical Activation Strategy for Versatile and Stereoselective N-Glycosylation. Angew Chem Int Ed Engl 2024; 63:e202409004. [PMID: 38837495 DOI: 10.1002/anie.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate donors under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.
Collapse
Affiliation(s)
- Wenyan Ding
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xinyu Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiaxin Luo
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shiping Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingqing Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jialu Ma
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chongxin Zhao
- Jiangsu Jiyi New Material CO., LTD, Xuzhou, 221700, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, 200433, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
19
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
20
|
Sawada N, Yu Z, Takinami H, Inoue D, Ghosh T, Sasaki N, Nokami T, Taniguchi T, Abe M, Koike T. Organophotocatalytic access to C-glycosides: multicomponent coupling reactions using glycosyl bromides. Chem Commun (Camb) 2024. [PMID: 39034774 DOI: 10.1039/d4cc02833c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Photochemical multi-component coupling reactions initiated by the activation of glycosyl bromides in the presence of 1,4-bis(diphenylamino)benzene (BDB) as an organic photocatalyst were developed. C-glycosides accompanied by olefin (di)functionalization were obtained. This method allows us to access various C-glycosides with alkene, carbonyl, alcohol, ether, and amide functionalities.
Collapse
Affiliation(s)
- Naoya Sawada
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Ziyi Yu
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Hiryu Takinami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Daichi Inoue
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Titli Ghosh
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Tsuyoshi Taniguchi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba city, Ibaraki, 305-8565, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima city, Hiroshima, 739-8526, Japan
| | - Takashi Koike
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, E24-315, 4-1 Gakuendai, Miyashiro-Machi, Minamisaitama-Gun, 345-8501 Saitama, Japan
| |
Collapse
|
21
|
Zhu H, Dang Q, Wang Y, Niu D. Polarity-Matched Initiation of Radical-Polar Crossover Reactions for the Synthesis of C-Allyl Glycosides with gem-Difluoroalkene Groups. J Org Chem 2024; 89:10175-10179. [PMID: 38975890 DOI: 10.1021/acs.joc.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Herein, we disclose a general method for the assembly of C-allyl glycosides containing gem-difluoroalkene groups via a radical-polar crossover strategy. Central to the success of this process is the polarity matching between the benzenesulfinate radical and the glycosyl donor, which facilitates the initiation of the glycosyl radical and the subsequent formation of gem-difluoroalkene sugar derivatives. This method demonstrated good compatibility with various glycosyl donors and functional groups. Furthermore, we showcase the utility of this method in modifying amino acids, potentially paving the way for analogous modifications to peptides.
Collapse
Affiliation(s)
- Hangping Zhu
- School of Chemical Engineering and Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiudi Dang
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingwei Wang
- School of Chemical Engineering and Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Chen A, Han Y, Wu R, Yang B, Zhu L, Zhu F. Palladium-catalyzed Suzuki-Miyaura cross-couplings of stable glycal boronates for robust synthesis of C-1 glycals. Nat Commun 2024; 15:5228. [PMID: 38898022 PMCID: PMC11187158 DOI: 10.1038/s41467-024-49547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.
Collapse
Grants
- We are grateful for financial support from the National Key R&D Program of China (Grant No. 2023YFA1508800, F. Z.), National Science Foundation (Grant No. 22301178, F. Z.), Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University (Grant No. 21TQ1400210, F. Z.), Fundamental Research Funds for the Central Universities (Grant No. 22X010201631, F. Z.), the Open Grant from the Pingyuan Laboratory (Grant No. 2023PY-OP-0102, F. Z.), Natural Science Foundation of Shanghai (Grant No. 21ZR1435600, F. Z.), Shanghai Sailing Program (Grant No 21YF1420600, F. Z.). Part of this study was supported by the National Science Foundation (Grant No. 22301180, B. Y.).
Collapse
Affiliation(s)
- Anrong Chen
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Han
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Rongfeng Wu
- Discovery Chemistry Unit, HitGen Inc., Chengdu, Sichuan, PR China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, PR China.
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
23
|
Chen ZH, Zheng YQ, Huang HG, Wang KH, Gong JL, Liu WB. From Quaternary Carbon to Tertiary C(sp 3)-Si and C(sp 3)-Ge Bonds: Decyanative Coupling of Malononitriles with Chlorosilanes and Chlorogermanes Enabled by Ni/Ti Dual Catalysis. J Am Chem Soc 2024; 146:14445-14452. [PMID: 38739877 DOI: 10.1021/jacs.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Gui Huang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ke-Hao Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun-Lin Gong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Lee C, Kim M, Han S, Kim D, Hong S. Nickel-Catalyzed Hydrofluorination in Unactivated Alkenes: Regio- and Enantioselective C-F Bond Formation. J Am Chem Soc 2024; 146:9375-9384. [PMID: 38512796 DOI: 10.1021/jacs.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Catalytic formation of a regio- and enantioselective C-F bond chiral center from readily available alkenes is a crucial goal, yet it continues to pose significant challenges in organic synthesis. Here, we report the regioselective formation of C-F bonds facilitated by NiH catalysis and a coordination directing strategy that enables precise hydrofluorination of both terminal and internal alkenes. Notably, we have optimized this methodology to achieve high enantioselectivity in creating aliphatic C-F stereogenic centers especially with β,γ-alkenyl substrates, using a tailored chiral Bn-BOx ligand. Another pivotal finding in our research is the identification of the (+)-nonlinear effect under optimized conditions, allowing for high enantioselectivity even with moderately enantiomerically enriched chiral ligands. Given the significant role of fluorine in pharmaceuticals and synthetic materials, this research offers essential insights into the regioselective and enantioselective formation of C-F bond chiral centers, paving the way for the efficient production of valuable fluorinated compounds.
Collapse
Affiliation(s)
- Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seunghoon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|