1
|
Tsuru S, Nagasaka M. Solvatochromism Observed in the X-ray Absorption Spectrum of Indole Dissolved in Water. J Phys Chem A 2025; 129:3020-3031. [PMID: 40116636 DOI: 10.1021/acs.jpca.5c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Current developments in X-ray absorption spectroscopy (XAS) for liquid samples in the water window demand a rigorous understanding of the interactions between molecules or solute-solvent interactions observed in the spectra. Meanwhile, a theoretical description of such effects, in addition to inner-shell excitations, remains controversial. The controversy is mainly over whether the orbitals should be optimized in the final states or whether the orbital optimizations can be expressed by dynamic electron correlation. In the present work, we measured the XAS spectra of indole in aqueous solution at the carbon and nitrogen K-edges to compare them with those measured in the gas phase. Obvious solvatochromism was observed only in the XAS spectrum measured at the nitrogen K-edge. We then interpreted the observed solvatochromism by simulating spectra with both ΔSCF, where the orbitals were optimized in the final states, and the algebraic-diagrammatic construction through second order [ADC(2)], where the molecular orbitals optimized in the ground state were used throughout. The present results indicate that covalent interactions, such as hydrogen bonds, are the dominant causes of the solvation effects observed in XAS spectra. The present simulations with ΔSCF and ADC(2), in addition to some other reports, highlight the importance of optimizing the orbitals in the final inner-shell excited states for general inner-shell calculations with predictive accuracy.
Collapse
Affiliation(s)
- Shota Tsuru
- RIKEN Center for Computational Science, RIKEN, Minatojima-minami 7-1-26, Kobe 650-0047, Japan
| | - Masanari Nagasaka
- Institute for Molecular Science and Graduate Institute for Advanced Studies, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
2
|
Buttarazzi E, Perrella F, Rega N, Petrone A. Watching the Interplay between Photoinduced Ultrafast Charge Dynamics and Nuclear Vibrations. J Chem Theory Comput 2023; 19:8751-8766. [PMID: 37991892 PMCID: PMC10720350 DOI: 10.1021/acs.jctc.3c00855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Here is presented the ultrafast hole-electron dynamics of photoinduced metal to ligand charge-transfer (MLCT) states in a Ru(II) complex, [Ru(dcbpy)2(NCS)2]4- (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine), a photoactive molecule employed in dye sensitized solar cells. Via cutting-edge computational techniques, a tailored computational protocol is here presented and developed to provide a detailed analysis of the electronic manifold coupled with nuclear vibrations to better understand the nonradiative pathways and the resulting overall dye performances in light-harvesting processes (electron injection). Thus, the effects of different vibrational modes were investigated on both the electronic levels and charge transfer dynamics through a theoretical-computational approach. First, the linear response time-dependent density functional (LR-TDDFT) formalism was employed to characterize excitation energies and spacing among electronic levels (the electronic layouts). Then, to understand the ultrafast (femtosecond) charge dynamics on the molecular scale, we relied on the nonperturbative mean-field quantum electronic dynamics via real-time (RT-) TDDFT. Three vibrational modes were selected, representative for collective nuclear movements that can have a significant influence on the electronic structure: two involving NCS- ligands and one involving dcbpy ligands. As main results, we observed that such MLCT states, under vibrational distortions, are strongly affected and a faster interligand electron transfer mechanism is observed along with an increasing MLCT character of the adiabatic electronic states approaching closer in energy due to the vibrations. Such findings can help both in providing a molecular picture of multidimensional vibro-electronic spectroscopic techniques, used to characterize ultrafast coherent and noncoherent dynamics of complex systems, and to improve dye performances with particular attention to the study of energy or charge transport processes and vibronic couplings.
Collapse
Affiliation(s)
- Edoardo Buttarazzi
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
| | - Fulvio Perrella
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Nadia Rega
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, I-80126 Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario
di Monte S. Angelo ed. 6, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
3
|
Kim Y, Nam D, Ma R, Kim S, Kim MJ, Kim J, Eom I, Lee JH, Kim TK. Development of an experimental apparatus to observe ultrafast phenomena by tender X-ray absorption spectroscopy at PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:194-201. [PMID: 34985436 PMCID: PMC8733995 DOI: 10.1107/s1600577521011449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described. Femtosecond TR-XAS measurements were conducted at the Ru L3-edge of well known photosensitizer tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]2+) in water. The results indicate ultrafast photoinduced electron transfer from the Ru center to the ligand, which demonstrates that the newly designed setup is applicable for monitoring ultrafast reactions in the femtosecond domain.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03772, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myung-jin Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jinhong Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03772, Republic of Korea
| |
Collapse
|
4
|
Kim Y, Ma R, Lee J, Harich J, Nam D, Kim S, Kim M, Ochmann M, Eom I, Huse N, Lee JH, Kim TK. Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:12165-12172. [PMID: 34914396 DOI: 10.1021/acs.jpclett.1c02400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Junho Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | | | | | - Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Shapovalova SO, Guda AA, Bubnov MP, Smolentsev G, Rusalev YV, Shapovalov VV, Zolotukhin AA, Cherkasov VK, Starikov AG, Vlasenko VG, Soldatov AV. Temperature and Time-resolved XANES Studies of Novel Valence Tautomeric Cobalt Complex. CHEM LETT 2021. [DOI: 10.1246/cl.210426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S. O. Shapovalova
- The Smart Materials Research Institute, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - A. A. Guda
- The Smart Materials Research Institute, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - M. P. Bubnov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., GSP-445, 603950 Nizhny Novgorod, Russia
| | - G. Smolentsev
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Yu. V. Rusalev
- The Smart Materials Research Institute, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - V. V. Shapovalov
- The Smart Materials Research Institute, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - A. A. Zolotukhin
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., GSP-445, 603950 Nizhny Novgorod, Russia
| | - V. K. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., GSP-445, 603950 Nizhny Novgorod, Russia
| | - A. G. Starikov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki ave. 194/2, 344090, Rostov-on-Don, Russian Federation
| | - V. G. Vlasenko
- Institute of Physics, Southern Federal University, Stachki Ave., 194, 344090, Rostov-on-Don, Russia
| | - A. V. Soldatov
- The Smart Materials Research Institute, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| |
Collapse
|
6
|
Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M, Cordones AA, Cho H, Hong K, Ma R, Lee JH, Dakovski GL, Turner JJ, Minitti MP, Quevedo W, Pietzsch A, Beye M, Kim TK, Schoenlein RW, Wernet P, Föhlisch A, Huse N. Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. J Phys Chem Lett 2021; 12:6676-6683. [PMID: 34260255 PMCID: PMC8312498 DOI: 10.1021/acs.jpclett.1c01401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 06/11/2023]
Abstract
We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.
Collapse
Affiliation(s)
- Raphael M. Jay
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | | | - Miguel Ochmann
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| | - Markus Hantschmann
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Amy A. Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Hana Cho
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Rory Ma
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
- Department of Chemistry and Chemistry Institute of Functional
Materials, Pusan National University, Busan 46241,
South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Georgi L. Dakovski
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Joshua J. Turner
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
- Stanford Institute for Materials and Energy Sciences,
Stanford University, Stanford, California 94305,
United States
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC
National Accelerator Laboratory, Menlo Park, California 94025,
United States
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Annette Pietzsch
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Martin Beye
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei
University, Seoul 03722, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States
| | - Philippe Wernet
- Department of Physics and Astronomy,
Uppsala University, 75120 Uppsala,
Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie,
Universität Potsdam, 14476 Potsdam,
Germany
- Institute for Methods and Instrumentation for
Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für
Materialien und Energie, 12489 Berlin, Germany
| | - Nils Huse
- Department of Physics, University of
Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg,
Germany
| |
Collapse
|
7
|
Engel RY, Ekimova M, Miedema PS, Kleine C, Ludwig J, Ochmann M, Grimm-Lebsanft B, Ma R, Teubner M, Dziarzhytski S, Brenner G, Czwalinna MK, Rösner B, Kim TK, David C, Herres-Pawlis S, Rübhausen M, Nibbering ETJ, Huse N, Beye M. Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014303. [PMID: 33564694 PMCID: PMC7847311 DOI: 10.1063/4.0000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
X-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3d-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers. Here, we demonstrate XANES spectroscopy of molecules in solution at the nitrogen K-edge, performed at FLASH, the Free-Electron Laser (FEL) in Hamburg. A split-beam referencing scheme optimally characterizes the strong shot-to-shot fluctuations intrinsic to the process of self-amplified spontaneous emission on which most FELs are based. Due to this normalization, a sensitivity of 1% relative transmission change is achieved, limited by fundamental photon shot noise. The effective FEL bandwidth is increased by streaking the electron energy over the FEL pulse train to measure a wider spectral window without changing FEL parameters. We propose modifications to the experimental setup with the potential of improving the instrument sensitivity by two orders of magnitude, thereby exploiting the high peak fluence of FELs to enable unprecedented sensitivity for femtosecond XANES spectroscopy on liquids in the soft x-ray spectral region.
Collapse
Affiliation(s)
- Robin Y. Engel
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| | - Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | - Carlo Kleine
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Jan Ludwig
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Miguel Ochmann
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Benjamin Grimm-Lebsanft
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Rory Ma
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | | | | | - Günter Brenner
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, South Korea
| | | | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Rübhausen
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Nils Huse
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Martin Beye
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
8
|
Koide A, Uemura Y, Kido D, Wakisaka Y, Takakusagi S, Ohtani B, Niwa Y, Nozawa S, Ichiyanagi K, Fukaya R, Adachi SI, Katayama T, Togashi T, Owada S, Yabashi M, Yamamoto Y, Katayama M, Hatada K, Yokoyama T, Asakura K. Photoinduced anisotropic distortion as the electron trapping site of tungsten trioxide by ultrafast W L 1-edge X-ray absorption spectroscopy with full potential multiple scattering calculations. Phys Chem Chem Phys 2020; 22:2615-2621. [PMID: 30989154 DOI: 10.1039/c9cp01332f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the excited state of photocatalysts is significant to improve their activity for water splitting reaction. X-ray absorption fine structure (XAFS) spectroscopy in X-ray free electron lasers (XFEL) is a powerful method to address dynamic changes in electronic states and structures of photocatalysts in the excited state in ultrafast short time scales. The ultrafast atomic-scale local structural change in photoexcited WO3 was observed by W L1 edge XAFS spectroscopy using an XFEL. An anisotropic local distortion around the W atom could reproduce well the spectral features at a delay time of 100 ps after photoexcitation based on full potential multiple scattering calculations. The distortion involved the movement of W to shrink the shortest W-O bonds and elongate the longest one. The movement of the W atom could be explained by the filling of the dxy and dzx orbitals, which were originally located at the bottom of the conduction band with photoexcited electrons.
Collapse
Affiliation(s)
- Akihiro Koide
- Institute for Molecular Science, Myodaiji-cho, Okazaki 444-8585, Japan. and Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Yohei Uemura
- Institute for Molecular Science, Myodaiji-cho, Okazaki 444-8585, Japan. and Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands.
| | - Daiki Kido
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Yuki Wakisaka
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Satoru Takakusagi
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Bunsho Ohtani
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Yasuhiro Niwa
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Kohei Ichiyanagi
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Ryo Fukaya
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | | | | | - Shigeki Owada
- RIKEN SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Yusaku Yamamoto
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Misaki Katayama
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Toyama 930-8555, Japan
| | | | - Kiyotaka Asakura
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
9
|
Megow S, Fitschen HL, Tuczek F, Temps F. Ultrafast Photodynamics of an Azopyridine-Functionalized Iron(II) Complex: Implications for the Concept of Ligand-Driven Light-Induced Spin Change. J Phys Chem Lett 2019; 10:6048-6054. [PMID: 31549841 DOI: 10.1021/acs.jpclett.9b02083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the ultrafast photodynamics of an iron(II) complex with a photoisomerizable pentadentate azo-tetrapyridylamino ligand after irradiation with ultraviolet light. The results of femtosecond transient electronic absorption spectroscopy performed on the low-spin (LS) form of the title complex show that initial excitation of the ππ* state of the azopyridine unit in the ligand at λpump = 312 nm is followed by an ultrafast intersystem crossing (ISC) that leads to the formation of a metal-centered (MC) 5T state, in competition with the intended photoswitching of the azopyridine unit. Additional measurements carried out upon excitation of the singlet metal-to-ligand charge-transfer (1MLCT) transition at λpump = 455 nm suggest that this energy transfer occurs via an MLCT state. The resulting high-spin (HS) 5T state of the complex is metastable and recovers to the LS ground state with a time constant of ∼3 ns. The implications of these observations on the ligand-driven light-induced spin change concept are discussed.
Collapse
Affiliation(s)
- Sebastian Megow
- Institut für Physikalische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Henrike-Leonie Fitschen
- Institut für Anorganische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Friedrich Temps
- Institut für Physikalische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| |
Collapse
|
10
|
Ash R, Zhang K, Vura-Weis J. Photoinduced valence tautomerism of a cobalt-dioxolene complex revealed with femtosecond M-edge XANES. J Chem Phys 2019; 151:104201. [PMID: 31521068 DOI: 10.1063/1.5115227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cobalt complexes that undergo charge-transfer induced spin-transitions or valence tautomerism from low spin CoIII to high spin (HS) CoII are potential candidates for magneto-optical switches. We use M2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy with 40 fs time resolution to measure the excited-state dynamics of CoIII(Cat-N-SQ)(Cat-N-BQ), where Cat-N-BQ and Cat-N-SQ are the singly and doubly reduced forms of the 2-(2-hydroxy-3,5-di-tert-butylphenyl-imino)-4,6-di-tert-butylcyclohexa-3,5-dienone ligand. The extreme ultraviolet probe pulses, produced using a tabletop high-harmonic generation light source, measure 3p → 3d transitions and are sensitive to the spin and oxidation state of the Co center. Photoexcitation at 525 nm produces a low-spin CoII ligand-to-metal charge transfer state which undergoes intersystem crossing to high-spin CoII in 67 fs. Vibrational cooling from this hot HS CoII state competes on the hundreds-of-fs time scale with back-intersystem crossing to the ground state, with 60% of the population trapped in a cold HS CoII state for 24 ps. Ligand field multiplet simulations accurately reproduce the ground-state spectra and support the excited-state assignments. This work demonstrates the ability of M2,3-edge XANES to measure ultrafast photophysics of molecular Co complexes.
Collapse
Affiliation(s)
- Ryan Ash
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, USA
| | - Kaili Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, USA
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, USA
| |
Collapse
|
11
|
Bokarev SI, Kühn O. Theoretical X‐ray spectroscopy of transition metal compounds. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Oliver Kühn
- Institut für Physik Universität Rostock Rostock Germany
| |
Collapse
|
12
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking MJJ, Elsaesser T, Nibbering ETJ, Rouzée A. Soft X-ray Absorption Spectroscopy of Aqueous Solutions Using a Table-Top Femtosecond Soft X-ray Source. J Phys Chem Lett 2019; 10:52-58. [PMID: 30547598 DOI: 10.1021/acs.jpclett.8b03420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We demonstrate the feasibility of soft X-ray absorption spectroscopy in the water window using a table-top laser-based approach with organic molecules and inorganic salts in aqueous solution. A high-order harmonic source delivers femtosecond pulses of short wavelength radiation in the photon energy range from 220 to 450 eV. We report static soft X-ray absorption measurements in transmission on the solvated compounds O=C(NH2)2, CaCl2, and NaNO3 using flatjet technology. We monitor the absorption of the molecular samples between the carbon (∼280 eV) and nitrogen (∼400 eV) K-edges and compare our results with previous measurements performed at the BESSYII facility. We discuss the roles of pulse stability and photon flux in the outcome of our experiments. Our work paves the way toward table-top femtosecond, solution-phase soft X-ray absorption spectroscopy in the water window.
Collapse
Affiliation(s)
- Carlo Kleine
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Maria Ekimova
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Gildas Goldsztejn
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Sebastian Raabe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Christian Strüber
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Jan Ludwig
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Suresh Yarlagadda
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Stefan Eisebitt
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Marc J J Vrakking
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Erik T J Nibbering
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| |
Collapse
|
14
|
Gaynor JD, Petrone A, Li X, Khalil M. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional Electronic-Vibrational Spectroscopy. J Phys Chem Lett 2018; 9:6289-6295. [PMID: 30339410 DOI: 10.1021/acs.jpclett.8b02752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Alessio Petrone
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| |
Collapse
|
15
|
Zhang K, Girolami GS, Vura-Weis J. Improved charge transfer multiplet method to simulate M- and L-edge X-ray absorption spectra of metal-centered excited states. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1600-1608. [PMID: 30179201 DOI: 10.1107/s1600577518009517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Charge transfer multiplet (CTM) theory is a computationally undemanding and highly mature method for simulating the soft X-ray spectra of first-row transition metal complexes. However, CTM theory has seldom been applied to the simulation of excited-state spectra. In this article, the CTM4XAS software package is extended to simulate M2,3- and L2,3-edge spectra for the excited states of first-row transition metals and also interpret CTM eigenfunctions in terms of Russell-Saunders term symbols. These new programs are used to reinterpret the recently reported excited-state M2,3-edge difference spectra of photogenerated ferrocenium cations and to propose alternative assignments for the electronic state of these cations responsible for the spectroscopic features. These new programs were also used to model the L2,3-edge spectra of FeII compounds during nuclear relaxation following photoinduced spin crossover and to propose spectroscopic signatures for their vibrationally hot states.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gregory S Girolami
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex. Nat Commun 2018; 9:1989. [PMID: 29777157 PMCID: PMC5959936 DOI: 10.1038/s41467-018-04351-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
Ultrafast isomerization reactions underpin many processes in (bio)chemical systems and molecular materials. Understanding the coupled evolution of atomic and molecular structure during isomerization is paramount for control and rational design in molecular science. Here we report transient X-ray absorption studies of the photo-induced linkage isomerization of a Ru-based photochromic molecule. X-ray spectra reveal the spin and valence charge of the Ru atom and provide experimental evidence that metal-centered excited states mediate isomerization. Complementary X-ray spectra of the functional ligand S atoms probe the nuclear structural rearrangements, highlighting the formation of two metal-centered states with different metal-ligand bonding. These results address an essential open question regarding the relative roles of transient charge-transfer and metal-centered states in mediating photoisomerization. Global temporal and spectral data analysis combined with time-dependent density functional theory reveals a complex mechanism for photoisomerization with atomic details of the transient molecular and electronic structure not accessible by other means. An essential open question in functional transition metal complexes is the relative roles of charge-transfer and metal-centered excited states. Here the authors identify the important role of metal-centered excited states in the linkage photoisomerization of a photochromic Ru-sulfoxide complex.
Collapse
|
17
|
Zerdane S, Collet E, Dong X, Matar SF, Wang HF, Desplanches C, Chastanet G, Chollet M, Glownia JM, Lemke HT, Lorenc M, Cammarata M. Electronic and Structural Dynamics During the Switching of the Photomagnetic Complex [Fe(L
222
N
5
)(CN)
2
]. Chemistry 2017; 24:5064-5069. [DOI: 10.1002/chem.201704746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Serhane Zerdane
- Univ Rennes 1, CNRS Institut de Physique de Rennes, UMR 6251, UBL, F- 35042 Rennes France
| | - Eric Collet
- Univ Rennes 1, CNRS Institut de Physique de Rennes, UMR 6251, UBL, F- 35042 Rennes France
| | - Xu Dong
- Univ Rennes 1, CNRS Institut de Physique de Rennes, UMR 6251, UBL, F- 35042 Rennes France
| | - Samir F. Matar
- CNRS Université de Bordeaux ICMCB 87 avenue du Dr A. Schweitzer Pessac, F- 33608 France
- Lebanese German University (LGU) Sahel Alam Campus, P.O. BOX 206 Jounieh Lebanon
| | - Hong Feng Wang
- CNRS Université de Bordeaux ICMCB 87 avenue du Dr A. Schweitzer Pessac, F- 33608 France
| | - Cedric Desplanches
- CNRS Université de Bordeaux ICMCB 87 avenue du Dr A. Schweitzer Pessac, F- 33608 France
| | - Guillaume Chastanet
- CNRS Université de Bordeaux ICMCB 87 avenue du Dr A. Schweitzer Pessac, F- 33608 France
| | | | | | - Henrick T. Lemke
- LCLS SLAC National Laboratory Menlo Park 94025 CA USA
- SwissFEL Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - Maciej Lorenc
- Univ Rennes 1, CNRS Institut de Physique de Rennes, UMR 6251, UBL, F- 35042 Rennes France
| | - Marco Cammarata
- Univ Rennes 1, CNRS Institut de Physique de Rennes, UMR 6251, UBL, F- 35042 Rennes France
| |
Collapse
|
18
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
19
|
Fondell M, Eckert S, Jay RM, Weniger C, Quevedo W, Niskanen J, Kennedy B, Sorgenfrei F, Schick D, Giangrisostomi E, Ovsyannikov R, Adamczyk K, Huse N, Wernet P, Mitzner R, Föhlisch A. Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:054902. [PMID: 28852689 PMCID: PMC5555770 DOI: 10.1063/1.4993755] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 05/06/2023]
Abstract
We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.
Collapse
Affiliation(s)
- Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Raphael M Jay
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Christian Weniger
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Johannes Niskanen
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Brian Kennedy
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Florian Sorgenfrei
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Daniel Schick
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Erika Giangrisostomi
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Ruslan Ovsyannikov
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Katrin Adamczyk
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | | |
Collapse
|
20
|
Zerdane S, Cammarata M, Balducci L, Bertoni R, Catala L, Mazerat S, Mallah T, Pedersen MN, Wulff M, Nakagawa K, Tokoro H, Ohkoshi SI, Collet E. Probing Transient Photoinduced Charge Transfer in Prussian Blue Analogues with Time-Resolved XANES and Optical Spectroscopy. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serhane Zerdane
- Univ Rennes 1; CNRS, Institut de Physique de Rennes, UMR 6251, UBL; 35042 Rennes France
| | - Marco Cammarata
- Univ Rennes 1; CNRS, Institut de Physique de Rennes, UMR 6251, UBL; 35042 Rennes France
| | - Lodovico Balducci
- Univ Rennes 1; CNRS, Institut de Physique de Rennes, UMR 6251, UBL; 35042 Rennes France
| | - Roman Bertoni
- Univ Rennes 1; CNRS, Institut de Physique de Rennes, UMR 6251, UBL; 35042 Rennes France
| | - Laure Catala
- Univ Paris Sud; Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; 91405 Orsay France
| | - Sandra Mazerat
- Univ Paris Sud; Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; 91405 Orsay France
| | - Talal Mallah
- Univ Paris Sud; Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; 91405 Orsay France
| | | | - Michael Wulff
- European Synchrotron Radiation Facility; 38000 Grenoble France
| | - Kosuke Nakagawa
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo Japan
| | - Hiroko Tokoro
- Division of Materials Science; Faculty of Pure and Applied Sciences; Univ Tsukuba; 1-1-1 Tennodai, Tsukuba 305-8577 Ibaraki Japan
| | - Shin-ichi Ohkoshi
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo Japan
| | - Eric Collet
- Univ Rennes 1; CNRS, Institut de Physique de Rennes, UMR 6251, UBL; 35042 Rennes France
| |
Collapse
|
21
|
Ochmann M, von Ahnen I, Cordones AA, Hussain A, Lee JH, Hong K, Adamczyk K, Vendrell O, Kim TK, Schoenlein RW, Huse N. Light-Induced Radical Formation and Isomerization of an Aromatic Thiol in Solution Followed by Time-Resolved X-ray Absorption Spectroscopy at the Sulfur K-Edge. J Am Chem Soc 2017; 139:4797-4804. [PMID: 28219243 DOI: 10.1021/jacs.6b12992] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ∼70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemical reaction pathways and transient products of sulfur-containing molecules in solution.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| | - Inga von Ahnen
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany
| | - Amy A Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Abid Hussain
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Kiryong Hong
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, South Korea
| | - Katrin Adamczyk
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| | - Oriol Vendrell
- Center for Free-Electron Laser Science, DESY and The Hamburg Centre for Ultrafast Imaging , 22607 Hamburg, Germany
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, South Korea
| | - Robert W Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free Electron Laser Science , 22761 Hamburg, Germany.,Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg, Germany
| |
Collapse
|
22
|
Drescher L, Galbraith MCE, Reitsma G, Dura J, Zhavoronkov N, Patchkovskii S, Vrakking MJJ, Mikosch J. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation. J Chem Phys 2016; 145:011101. [DOI: 10.1063/1.4955212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Cho H, Hong K, Strader ML, Lee JH, Schoenlein RW, Huse N, Kim TK. Electronic and Molecular Structure of the Transient Radical Photocatalyst Mn(CO)5 and Its Parent Compound Mn2(CO)10. Inorg Chem 2016; 55:5895-903. [PMID: 27248860 DOI: 10.1021/acs.inorgchem.6b00208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a time-resolved X-ray spectroscopic study of the structural and electronic rearrangements of the photocatalyst Mn2(CO)10 upon photocleavage of the metal-metal bond. Our study of the manganese K-edge fine structure reveals details of both the molecular structure and valence charge distribution of the photodissociated radical product. Transient X-ray absorption spectra of the formation of the Mn(CO)5 radical demonstrate surprisingly small structural modifications between the parent molecule and the resulting two identical manganese monomers. Small modifications of the local valence charge distribution are decisive for the catalytic activity of the radical product. The spectral changes reflect altered hybridization of metal-3d, metal-4p, and ligand-2p orbitals, particularly loss of interligand interaction, accompanied by the necessary spin transition due to radical formation. The spectral changes in the manganese pre- and main-edge region are well-reproduced by time-dependent density functional theory and ab initio multiple scattering calculations.
Collapse
Affiliation(s)
- Hana Cho
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, Republic of Korea.,Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, Republic of Korea.,Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Matthew L Strader
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Robert W Schoenlein
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Nils Huse
- Department of Physics, University of Hamburg, Max Planck Institute for the Structure and Dynamics of Matter, and Center for Free-Electron Laser Science , 22761 Hamburg, Germany
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, Republic of Korea
| |
Collapse
|
24
|
Chergui M. Time-resolved X-ray spectroscopies of chemical systems: New perspectives. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:031001. [PMID: 27376102 PMCID: PMC4902826 DOI: 10.1063/1.4953104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.
Collapse
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS) , ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|