1
|
Cao D, Yan Z, Cui D, He D, Chen X, Peng Y, Khan MY, Liu J, Ma X, Tang J, Wang W. Colloidal ionogels: Controlled assembly and self-propulsion upon tunable swelling. J Colloid Interface Sci 2025; 685:522-536. [PMID: 39855093 DOI: 10.1016/j.jcis.2024.12.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling. For example, we synthesized microspheres of polymethylmethacrylate loaded with ionic liquid [Bmim][PF6], which were released from the colloidal ionogel upon swelling in alcohol-water mixtures and dissociated into cations and anions of different diffusivities. The resulting electric field leads to four types of pair-wise colloidal interactions via ionic diffusiophoresis and diffusioosmosis, giving rise to four types of self-assembled superstructures. These interactions were precisely modulated by altering the swelling conditions and the ionic liquids used. Additionally, partially blocking the ionogel's surface induces anisotropic swelling and asymmetric ion release, turning the colloidal ionogel into a self-propelled Janus colloidal motor powered by ionic self-diffusiophoresis, reaching speeds of several µm/s and lasting about 100 s. These findings indicate that colloidal ionogels are smart colloidal building blocks with highly tunable pair-wise interactions, self-assembled structures, and self-propulsion, offering potential applications in biomedical sensing, environmental monitoring, and photonics.
Collapse
Affiliation(s)
- Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Dongqing He
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China; Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
3
|
Boccardo F, Pierre-Louis O. Reinforcement learning with thermal fluctuations at the nanoscale. Phys Rev E 2024; 110:L023301. [PMID: 39294981 DOI: 10.1103/physreve.110.l023301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
Reinforcement Learning offers a framework to learn to choose actions in order to control a system. However, at small scales Brownian fluctuations limit the control of nanomachine actuation or nanonavigation and of the molecular machinery of life. We analyze this regime using the general framework of Markov decision processes. We show that at the nanoscale, while optimal control actions should bring an improvement proportional to the small ratio of the applied force times a length scale over the temperature, the learned improvement is smaller and proportional to the square of this small ratio. Consequently, the efficiency of learning, which compares the learning improvement to the theoretical optimal improvement, drops to zero. Nevertheless, these limitations can be circumvented by using actions learned at a lower temperature. These results are illustrated with simulations of the control of the shape of small particle clusters.
Collapse
|
4
|
Chen J, Hu J, Kapral R. Chemical Logic Gates on Active Colloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305695. [PMID: 38450886 PMCID: PMC11095161 DOI: 10.1002/advs.202305695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Indexed: 03/08/2024]
Abstract
Recent studies have shown that active colloidal motors using enzymatic reactions for propulsion hold special promise for applications in fields ranging from biology to material science. It will be desirable to have active colloids with capability of computation so that they can act autonomously to sense their surroundings and alter their own dynamics. It is shown how small chemical networks that make use of enzymatic chemical reactions on the colloid surface can be used to construct motor-based chemical logic gates. The basic features of coupled enzymatic reactions that are responsible for propulsion and underlie the construction and function of chemical gates are described using continuum theory and molecular simulation. Examples are given that show how colloids with specific chemical logic gates, can perform simple sensing tasks. Due to the diverse functions of different enzyme gates, operating alone or in circuits, the work presented here supports the suggestion that synthetic motors using such gates could be designed to operate in an autonomous way in order to complete complicated tasks.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Jia‐Qi Hu
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
5
|
Khatri N, Kapral R. Clustering of chemically propelled nanomotors in chemically active environments. CHAOS (WOODBURY, N.Y.) 2024; 34:033103. [PMID: 38427933 DOI: 10.1063/5.0188624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Synthetic nanomotors powered by chemical reactions have been designed to act as vehicles for active cargo transport, drug delivery, and a variety of other uses. Collections of such motors, acting in consort, can self-assemble to form swarms or clusters, providing opportunities for applications on various length scales. While such collective behavior has been studied when the motors move in a chemically inactive fluid environment, when the medium in which they move is a chemical network that supports complex spatial and temporal patterns, through simulation and theoretical analysis we show that collective behavior changes. Spatial patterns in the environment can guide and control motor collective states, and interactions of the motors with their environment can give rise to distinctive spatiotemporal motor patterns. The results are illustrated by studies of the motor dynamics in systems that support Turing patterns and spiral waves. This work is relevant for potential applications that involve many active nanomotors moving in complex chemical or biological environments.
Collapse
Affiliation(s)
- Narender Khatri
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Liu J, Yang Z, Yan Z, Duan S, Chen X, Cui D, Cao D, Kuang T, Ma X, Wang W. Chemical Micromotors Move Faster at Oil-Water Interfaces. J Am Chem Soc 2024; 146:4221-4233. [PMID: 38305127 DOI: 10.1021/jacs.3c13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Many real-world scenarios involve interfaces, particularly liquid-liquid interfaces, that can fundamentally alter the dynamics of colloids. This is poorly understood for chemically active colloids that release chemicals into their environment. We report here the surprising discovery that chemical micromotors─colloids that convert chemical fuels into self-propulsion─move significantly faster at an oil-water interface than on a glass substrate. Typical speed increases ranged from 3 to 6 times up to an order of magnitude and were observed for different types of chemical motors and interfaces made with different oils. Such speed increases are likely caused by faster chemical reactions at an oil-water interface than at a glass-water interface, but the exact mechanism remains unknown. Our results provide valuable insights into the complex interactions between chemical micromotors and their environments, which are important for applications in the human body or in the removal of organic pollutants from water. In addition, this study also suggests that chemical reactions occur faster at an oil-water interface and that micromotors can serve as a probe for such an effect.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhou Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ting Kuang
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Xu W, Tao Y, Xu H, Wen J. Theoretical trends in the dynamics simulations of molecular machines across multiple scales. Phys Chem Chem Phys 2024; 26:4828-4839. [PMID: 38235540 DOI: 10.1039/d3cp05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Over the past few decades, molecular machines have been extensively studied, since they are composed of single molecules for functional materials capable of responding to external stimuli, enabling motion at scales ranging from the microscopic to the macroscopic level within molecular aggregates. This advancement holds the potential to efficiently transform external resources into mechanical movement, achieved through precise control of conformational changes in stimuli-responsive materials. However, the underlying mechanism that links microscopic and macroscopic motions remains unclear, demanding computational development associated with simulating the construction of molecular machines from single molecules. This bottleneck has impeded the design of more efficient functional materials. Advancements in theoretical simulations have successfully been developed in various computational models to unveil the operational mechanisms of stimulus-responsive molecular machines, which could help us reduce the costs in experimental trial-and-error procedures. It opens doors to the computer-aided design of innovative functional materials. In this perspective, we have reviewed theoretical approaches employed in simulating dynamic processes involving conformational changes in molecular machines, spanning different scales and environmental conditions. In addition, we have highlighted current challenges and anticipated future trends in the collective control of aggregates within molecular machines. Our goal is to provide a comprehensive overview of recent theoretical advancements in the field of molecular machines, offering valuable insights for the design of novel smart materials.
Collapse
Affiliation(s)
- Weijia Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanda Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Wang W. Open Questions of Chemically Powered Nano- and Micromotors. J Am Chem Soc 2023; 145:27185-27197. [PMID: 38063192 DOI: 10.1021/jacs.3c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
9
|
Sorkin B, Be'er A, Diamant H, Ariel G. Detecting and characterizing phase transitions in active matter using entropy. SOFT MATTER 2023; 19:5118-5126. [PMID: 37382372 DOI: 10.1039/d3sm00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A major challenge in the study of active matter lies in quantitative characterization of phases and transitions between them. We show how the entropy of a collection of active objects can be used to classify regimes and spatial patterns in their collective behavior. Specifically, we estimate the contributions to the total entropy from correlations between the degrees of freedom of position and orientation. This analysis pin-points the flocking transition in the Vicsek model while clarifying the physical mechanism behind the transition. When applied to experiments on swarming Bacillus subtilis with different cell aspect ratios and overall bacterial area fractions, the entropy analysis reveals a rich phase diagram with transitions between qualitatively different swarm statistics. We discuss physical and biological implications of these findings.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel.
| |
Collapse
|
10
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
11
|
Peng Y, Xu P, Duan S, Liu J, Moran JL, Wang W. Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angew Chem Int Ed Engl 2022; 61:e202116041. [PMID: 34994039 DOI: 10.1002/anie.202116041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Distinguishing the operating mechanisms of nano- and micromotors powered by chemical gradients, i.e. "autophoresis", holds the key for fundamental and applied reasons. In this article, we propose and experimentally confirm that the speeds of a self-diffusiophoretic colloidal motor scale inversely to its population density but not for self-electrophoretic motors, because the former is an ion source and thus increases the solution ionic strength over time while the latter does not. They also form clusters in visually distinguishable and quantifiable ways. This pair of rules is simple, powerful, and insensitive to the specific material composition, shape or size of a colloidal motor, and does not require any measurement beyond typical microscopy. These rules are not only useful in clarifying the operating mechanisms of typical autophoretic micromotors, but also in predicting the dynamics of unconventional ones that are yet to be experimentally realized, even those involving enzymes.
Collapse
Affiliation(s)
- Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Pengzhao Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Shifang Duan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | | | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
12
|
|
13
|
McGlasson A, Bradley LC. Investigating Time-Dependent Active Motion of Janus Micromotors using Dynamic Light Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104926. [PMID: 34655162 DOI: 10.1002/smll.202104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Advances in fabrication methods have positioned Janus micromotors (JMs) as candidates for use as autonomous devices in applications across diverse fields, spanning drug delivery to environmental remediation. While the design of most micromotors is straightforward, the non-steady state active motion exhibited by these systems is complex and difficult to characterize. Traditionally, JM active motion is characterized using optical microscopy single particle tracking for systems confined in 2D. Dynamic light scattering (DLS) offers an alternative high-throughput method for characterizing the 3D active motion in bulk JM dispersions with additional capabilities to quantify time-dependent behavior for a broader range of JM sizes. Here, the active motion of spherical JMs is examined by DLS and it is demonstrated that the method enables decoupling of the translational and rotational diffusion. Systematic studies quantifying the time-dependent diffusive properties as a function of fuel concentration, JM concentration, and time after fuel addition are presented. The analyses presented in this work position DLS to facilitate future advances of JM systems by serving as a fast-screening characterization method for active motion.
Collapse
Affiliation(s)
- Alex McGlasson
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura C Bradley
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
14
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
15
|
Piras CC, Smith DK. Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled, Low-Molecular-Weight Gelator. Chemistry 2021; 27:14527-14534. [PMID: 34339068 PMCID: PMC8597049 DOI: 10.1002/chem.202102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/25/2023]
Abstract
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol - smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a "stamp" - circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a "solid-like" network prevents its leaching from the gel. The LMWG also retains its own unique function - specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
16
|
Lyu X, Liu X, Zhou C, Duan S, Xu P, Dai J, Chen X, Peng Y, Cui D, Tang J, Ma X, Wang W. Active, Yet Little Mobility: Asymmetric Decomposition of H 2O 2 Is Not Sufficient in Propelling Catalytic Micromotors. J Am Chem Soc 2021; 143:12154-12164. [PMID: 34339185 DOI: 10.1021/jacs.1c04501] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A popular principle in designing chemical micromachines is to take advantage of asymmetric chemical reactions such as the catalytic decomposition of H2O2. Contrary to intuition, we use Janus micromotors half-coated with platinum (Pt) or catalase as an example to show that this ingredient is not sufficient in powering a micromotor into self-propulsion. In particular, by annealing a thin Pt film on a SiO2 microsphere, the resulting microsphere half-decorated with discrete Pt nanoparticles swims ∼80% more slowly than its unannealed counterpart in H2O2, even though they both catalytically produce comparable amounts of oxygen. Similarly, SiO2 microspheres half-functionalized with the enzyme catalase show negligible self-propulsion despite high catalytic activity toward decomposing H2O2. In addition to highlighting how surface morphology of a catalytic cap enables/disables a chemical micromotor, this study offers a refreshed perspective in understanding how chemistry powers nano- and microscopic objects (or not): our results are consistent with a self-electrophoresis mechanism that emphasizes the electrochemical decomposition of H2O2 over nonelectrochemical pathways. More broadly, our finding is a critical piece of the puzzle in understanding and designing nano- and micromachines, in developing capable model systems of active colloids, and in relating enzymes to active matter.
Collapse
Affiliation(s)
- Xianglong Lyu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xiaoxia Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.,Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Pengzhao Xu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jia Dai
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China.,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.,Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Wang Q, Zhou C, Huang L, Wang W. "Ballistic" waves among chemically oscillating micromotors. Chem Commun (Camb) 2021; 57:8492-8495. [PMID: 34350918 DOI: 10.1039/d1cc02558a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coordinating a group of chemically powered micromotors holds great importance in potential applications that involve a large population in a complex environment, yet information transmission at a population scale remains challenging. To this end, we demonstrate how propagating waves emerge among a population of spontaneously oscillating micromotors that dash toward a direction prescribed by their Janus orientations (termed a "ballistic" wave). Moreover, chemical communication among these micromotors enables the tuning of the speed and frequency of individual micromotors and their waves, by varying the population density or the viscosity of the medium.
Collapse
Affiliation(s)
- Qizhang Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | | | | | | |
Collapse
|
18
|
Chen JX, Yuan R, Cui R, Qiao L. The dynamics and self-assembly of chemically self-propelled sphere dimers. NANOSCALE 2021; 13:1055-1060. [PMID: 33393558 DOI: 10.1039/d0nr06368a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of chemically powered sphere dimers at the micro- and nano-scales confined in a quasi-two-dimensional geometry are investigated. The dimer consists of a Janus particle and a non-catalytic sphere. A chemical reaction taking place on the catalytic surface of the Janus particle creates asymmetric concentration gradients that give rise to the self-propulsion of both rotation and translation of the dimer. Due to the chemical interactions, ensembles of dimers spontaneously form anti-parallel aligned doublets that exhibit the same rotation direction and lose translational motion. The chirality of the dimer plays an important role in the process of doublet formation. The study displays new collective dynamics and structures when both translational and rotational self-propulsion occur.
Collapse
Affiliation(s)
- Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|
19
|
Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021; 10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Indexed: 12/11/2022]
Abstract
A nanomotor is a miniaturized device that converts energy stored in the environment into mechanical motion. The last two decades have witnessed a surge of research interests in the biomedical applications of nanomotors, but little clinical translation. To accelerate this process, targeted cancer therapy is used as an example to describe a "survive, locate, operate, and terminate" (SLOT) mission of a nanomotor, where it must 1) survive in the unfriendly in vivo environment, 2) locate its target as well as be located by human operators, 3) carry out specific operations, and 4) terminate after the mission is completed. Along this journey, the challenges presented to a nanomotor, including to power, navigate, steer, target, release, control, image, and communicate are discussed, and how state-of-the-art nanomotors meet or fall short of these requirements is critically reviewed. These discussions are then condensed into a table for easy reference. In particular, it is argued that chemically powered nanomotors are intrinsically ill-positioned for targeted cancer therapy, while nanomotors powered by magnetic fields or ultrasound show more promises. Following this argument, a tentative nanomotor design is then presented in the end to conform to the SLOT guideline, and to inspire practical, functional nanorobots that are yet to come.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Zhou
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
20
|
Cui RF, Chen QH, Chen JX. Separation of nanoparticles via surfing on chemical wavefronts. NANOSCALE 2020; 12:12275-12280. [PMID: 32246757 DOI: 10.1039/d0nr01211d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The separation of micro and nanoscale colloids is a necessary step in most biological microassay techniques, and is a common practice in microchemical processing. Chemical waves are frequently encountered in biochemical systems driven far from equilibrium. Here, we put forward a strategy for separating small suspending colloids by means of their surfing on substrate chemical wavefronts. The colloids with catalytic activities sensitive to the substrates are activated to show self-propulsion and consequently exhibit a chemotactic response to the traveling wavefronts, which results in their spontaneous separation from the multicomponent complex mixture via self-diffusiophoresis. The dynamics of the process is analyzed through a particle-based simulation. In addition, it is found that separation can be carried out according to particle size. The mechanisms underpinning the chemical and physical separation processes are discussed, and the dependencies on the reaction rate constant and particle size are presented. The results may prove relevant for further experimental and theoretical studies of separation in complex active environments.
Collapse
Affiliation(s)
- Ru-Fei Cui
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qing-Hu Chen
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
21
|
Gaspard P, Kapral R. Active Matter, Microreversibility, and Thermodynamics. RESEARCH 2020; 2020:9739231. [PMID: 32524094 PMCID: PMC7260603 DOI: 10.34133/2020/9739231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 11/12/2022]
Abstract
Active matter, comprising many active agents interacting and moving in fluids or more complex environments, is a commonly occurring state of matter in biological and physical systems. By its very nature, active matter systems exist in nonequilibrium states. In this paper, the active agents are small Janus colloidal particles that use chemical energy provided by chemical reactions occurring on their surfaces for propulsion through a diffusiophoretic mechanism. As a result of interactions among these colloids, either directly or through fluid velocity and concentration fields, they may act collectively to form structures such as dynamic clusters. A general nonequilibrium thermodynamics framework for the description of such systems is presented that accounts for both self-diffusiophoresis and diffusiophoresis due to external concentration gradients, and is consistent with microreversibility. It predicts the existence of a reciprocal effect of diffusiophoresis back onto the reaction rate for the entire collection of colloids in the system, as well as the existence of a clustering instability that leads to nonequilibrium inhomogeneous system states.
Collapse
Affiliation(s)
- Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (U.L.B.), Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
22
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Swarm Hunting and Cluster Ejections in Chemically Communicating Active Mixtures. Sci Rep 2020; 10:5594. [PMID: 32221323 PMCID: PMC7101431 DOI: 10.1038/s41598-020-62324-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
A large variety of microorganisms produce molecules to communicate via complex signaling mechanisms such as quorum sensing and chemotaxis. The biological diversity is enormous, but synthetic inanimate colloidal microswimmers mimic microbiological communication (synthetic chemotaxis) and may be used to explore collective behaviour beyond the one-species limit in simpler setups. In this work we combine particle based and continuum simulations as well as linear stability analyses, and study a physical minimal model of two chemotactic species. We observed a rich phase diagram comprising a “hunting swarm phase”, where both species self-segregate and form swarms, pursuing, or hunting each other, and a “core-shell-cluster phase”, where one species forms a dense cluster, which is surrounded by a (fluctuating) corona of particles from the other species. Once formed, these clusters can dynamically eject their core such that the clusters almost turn inside out. These results exemplify a physical route to collective behaviours in microorganisms and active colloids, which are so-far known to occur only for comparatively large and complex animals like insects or crustaceans.
Collapse
|
24
|
Hauke F, Löwen H, Liebchen B. Clustering-induced velocity-reversals of active colloids mixed with passive particles. J Chem Phys 2020; 152:014903. [DOI: 10.1063/1.5128641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Frederik Hauke
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
25
|
Xiao Z, Chen J, Duan S, Lv X, Wang J, Ma X, Tang J, Wang W. Bimetallic coatings synergistically enhance the speeds of photocatalytic TiO2 micromotors. Chem Commun (Camb) 2020; 56:4728-4731. [DOI: 10.1039/d0cc00212g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bimetallic cap containing sputtered silver is a better catalyst that significantly improves the performance of catalytically powered micromotors.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Jingyuan Chen
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Shifang Duan
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Xianglong Lv
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Jizhuang Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong 999077
- China
| | - Xing Ma
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
- Flexible Printed Electronic Technology Center
| | - Jinyao Tang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong 999077
- China
- State Key Laboratory of Synthetic Chemistry
| | - Wei Wang
- School of Materials Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| |
Collapse
|
26
|
Jee AY, Chen K, Tlusty T, Zhao J, Granick S. Enhanced Diffusion and Oligomeric Enzyme Dissociation. J Am Chem Soc 2019; 141:20062-20068. [DOI: 10.1021/jacs.9b06949] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ah-Young Jee
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Kuo Chen
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
- Department of Physics, UNIST, Ulsan 44919, South Korea
| | - Jiang Zhao
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
- Department of Physics, UNIST, Ulsan 44919, South Korea
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| |
Collapse
|
27
|
Sonntag L, Simmchen J, Magdanz V. Nano-and Micromotors Designed for Cancer Therapy. Molecules 2019; 24:E3410. [PMID: 31546857 PMCID: PMC6767050 DOI: 10.3390/molecules24183410] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Research on nano- and micromotors has evolved into a frequently cited research area with innovative technology envisioned for one of current humanities' most deadly problems: cancer. The development of cancer targeting drug delivery strategies involving nano-and micromotors has been a vibrant field of study over the past few years. This review aims at categorizing recent significant results, classifying them according to the employed propulsion mechanisms starting from chemically driven micromotors, to field driven and biohybrid approaches. In concluding remarks of section 2, we give an insight into shape changing micromotors that are envisioned to have a significant contribution. Finally, we critically discuss which important aspects still have to be addressed and which challenges still lie ahead of us.
Collapse
Affiliation(s)
- Luisa Sonntag
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | | |
Collapse
|
28
|
Fu H, Zhao X, Lu W, Tian H, Xu S, Li Y. Nanoparticle induced limitless spiral of polyacetylene isomers. NANOTECHNOLOGY 2019; 30:365602. [PMID: 31100743 DOI: 10.1088/1361-6528/ab2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Helical nanomaterials represent an emerging group of nanostructures because of their multiple functionalities enabled by unique spiral geometry and nanoscale dimensions. This study demonstrates that several trans-transoid polyacetylene (Tt-PA) chains can self-spiral limitlessly over the whole length of polymers to form regular multiple helices under the inducement of water cluster, fullerene ball and metallic nanoparticles (NPs). Multi-helices possess random chirality selection which have equal probability of left-handedness and right-handedness. Energy components, geometric parameters and differences of helices induced by different NPs are analyzed to deeply probe the possible mechanism and the nature of the limitless spiral of the PA polymer. Furthermore, the helical self-assembly of cis-formed cis-transoid (Ct-PA) and trans-cisoid (Tc-PA) isomers is further studied. The spiral ability of Ct-PA is much higher, but Tc-PA is much lower than that of Tt-PA. Remarkably, Tc-PAs are always form five-helix at room temperature.
Collapse
Affiliation(s)
- Hongjin Fu
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
Collective phenomena existing universally in both biological systems and artificial active matter are increasingly attracting interest. The interactions can be grouped into active-active and active-passive ones, where the reports on the purely active system are still clearly dominating. Despite the growing interest, summarizing works for active-passive interactions in artificial active matter are still missing. For that reason, we start this review with a general introduction, followed by a short spotlight on theoretical works and then an extensive overview of experimental realizations. We classify the cases according to the active colloids’ mechanisms of motion and discuss the principles of the interactions. A few key applications of the active-passive interaction of current interest are also highlighted (such as cargo transport, flow field mapping, assembly of structures). We expect that this review will help the fundamental understanding and inspire further studies on active matter.
Collapse
|
31
|
Chuphal P, P V, Thakur S. Dynamics of diffusiophoretic vesicle under external shear flow. J Chem Phys 2019. [DOI: 10.1063/1.5112808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Prabha Chuphal
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Varun P
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
32
|
Zhou C, Chen X, Han Z, Wang W. Photochemically Excited, Pulsating Janus Colloidal Motors of Tunable Dynamics. ACS NANO 2019; 13:4064-4072. [PMID: 30916919 DOI: 10.1021/acsnano.8b08276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Spontaneous periodicity is widely found in many biological and synthetic systems, and designing colloidal motors that mimic this feature may not only facilitate our understanding of how complexity emerges but also enable applications that benefit from a time-varying activity. However, there is so far no report on a colloidal motor system that shows controllable and spontaneous oscillation in speeds. Inspired by previous studies of oscillating silver microparticles, we report silver-poly(methyl methacrylate) microsphere Janus colloidal motors that moved, interacted with tracers, and exhibited negative gravitaxis all in an oscillatory fashion. Its dynamics, including pulsating speeds and magnitude, as well as whether moving forward in a pulsating or continuous mode, can be systematically modulated by varying chemical concentrations, light intensity, and the way light was applied. A qualitative mechanism is proposed to link the oscillation of Janus colloidal motors to ionic diffusiophoresis, while nonlinearity is suspected to arise from a sequence of autocatalytic decomposition of AgCl and its slow buildup in the presence of H2O2 and light. The generation of light-absorbing Ag nanoparticles is suspected to be the key. This study therefore establishes a robust model system of chemically driven, oscillatory colloidal motors with clear directionality, good tunability, and an improved mechanism, with which complex, emergent phenomena can be explored.
Collapse
Affiliation(s)
- Chao Zhou
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Xi Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Zhiyang Han
- School of Computer Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
33
|
Huang MJ, Schofield J, Gaspard P, Kapral R. From single particle motion to collective dynamics in Janus motor systems. J Chem Phys 2019; 150:124110. [PMID: 30927899 DOI: 10.1063/1.5081820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jeremy Schofield
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (U.L.B.), Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
34
|
Jiang Z, You L, Dou W, Sun T, Xu P. Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study. Polymers (Basel) 2019; 11:polym11020282. [PMID: 30960266 PMCID: PMC6419079 DOI: 10.3390/polym11020282] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
The effect of the electric field on the conformational properties of the protein 1BBL was investigated by molecular dynamics simulations. Our simulation results clearly capture the structural transitions of the protein sample from helix to turn or random coil conformation induced by the increasing strength of the electric field. During our analysis, we found that the conformational stability is weakened, and the protein sample is stretched as an unfolded structure when it was exposed in a sufficiently high electric field. The characteristic time when the jump occurs in the time evolution curves of root mean square deviation (RMSD) and radius of gyration Rg decreases with increasing electric strength, which demonstrates the rapidly conformational transition that occurs. The number of intra-protein hydrogen bonds, which is the key factor for stabilizing the protein structure, is related to the overall size of the protein. The value of the dipole moment and characteristic time are both influenced by the strength, but are independent of the direction of the external field. The protein sample becomes rotated with the electric field direction. These conclusions provide a theoretical realization of understanding the protein conformational transition in an electric field and the guidance for anticipative applications.
Collapse
Affiliation(s)
- Zhouting Jiang
- Department of Applied Physics, China Jiliang University, No. 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Le You
- Department of Applied Physics, China Jiliang University, No. 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Wenhui Dou
- Department of Applied Physics, China Jiliang University, No. 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou 310023, China.
| | - Peng Xu
- Department of Applied Physics, China Jiliang University, No. 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| |
Collapse
|
35
|
Abstract
The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond themselves and use chemotaxis for signaling, which can be seen as a basic form of communication, allowing ensembles of microorganisms to coordinate their behavior, for example, during embryogenesis, biofilm formation, or cellular aggregation. For example, Dictyostelium cells use signaling as a survival strategy: when starving, they produce certain chemicals toward which other cells show taxis. This leads to aggregation of the cells resulting in a multicellular aggregate that can sustain long starvation periods. Remarkably, the past decade has led to the development of synthetic microswimmers, which can self-propel through a solvent, analogously to bacteria and other microorganisms. The mechanism underlying the self-propulsion of synthetic microswimmers like camphor boats, droplet swimmers, and in particular autophoretic Janus colloids involves the production of certain chemicals. As we will discuss in this Account, the same chemicals (phoretic fields) involved in the self-propulsion of a (Janus) microswimmer also act on other ones and bias their swimming direction toward (or away from) the producing microswimmer. Synthetic microswimmers therefore provide a synthetic analogue to motile microorganisms interacting by taxis toward (or away from) self-produced chemical fields. In this Account, we review recent progress in the theoretical description of synthetic chemotaxis mainly based on simulations and field theoretical descriptions. We will begin with single motile particles leaving chemical trails behind with which they interact themselves, leading to effects like self-trapping or self-avoidance. Besides these self-interactions, in ensembles of synthetic motile particles each particle also responds to the chemicals produced by other particles, inducing chemical (or phoretic) cross-interactions. When these interactions are attractive, they commonly lead to clusters, even at low particle density. These clusters may either proceed toward macrophase separation, resembling Dictyostelium aggregation, or, as shown very recently, lead to dynamic clusters of self-limited size (dynamic clustering) as seen in experiments in autophoretic Janus colloids. Besides the classical case where chemical interactions are attractive, this Account discusses, as its main focus, repulsive chemical interactions, which can create a new and less known avenue to pattern formation in active systems leading to a variety of pattern, including clusters which are surrounded by shells of chemicals, traveling waves and more complex continuously reshaping patterns. In all these cases "synthetic signalling" can crucially determine the collective behavior of synthetic microswimmer ensembles and can be used as a design principle to create patterns in motile active particles.
Collapse
Affiliation(s)
- Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|