1
|
Lu J, Ding J, Xia Z, Yang Z, Lv C, Zong S, Cao J, Zhou D, Long S, Sun W, Du J, Fan J, Peng X. Spin Manipulation Engineering of Photodynamic Intermediates: Magnetic Amplification of Oxyradicals Generation for Enhanced Antitumor Phototherapeutic Efficacy. J Am Chem Soc 2025; 147:18100-18109. [PMID: 40358621 DOI: 10.1021/jacs.5c04111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Improving the photosensitization efficiency represents a critical challenge in photodynamic therapy (PDT) research. While cyanines exhibit potential as photosensitizers (PSs) due to their large extinction coefficients and excellent biocompatibility, the inherent limitations in intersystem crossing severely affect therapeutic efficacy. Herein, we proposed a bottom-up magnetically enhanced photodynamic therapy (magneto-PDT) paradigm employing fluorobenzene-substituted pentamethine cyanine as type-I reactive oxygen species generators. Based on the radical pair mechanism and magnetic field effect, the notable difference in g-factors (Δg) between PSs and oxyradicals enabled magnetically responsive amplification of Cy5-3,4,5-3F-mediated hydroxyl radical (•OH) and superoxide anion radical (O2•-) production, achieving maximum yield enhancements of 66.9 and 28.0% respectively at 500 mT. This magnetically augmented oxyradicals generation exhibited universal cytotoxicity superiority over conventional PDT protocols in various cancer cell models. Notably, the semi-inhibitory concentration (IC50) of murine mammary carcinoma 4T1 cells demonstrated a remarkable reduction under both normoxic and hypoxic conditions, with the most pronounced decrease observed in normoxia from 0.91 μM (PDT alone) to 0.38 μM (magneto-PDT). The significantly magneto-enhanced therapeutic performance effectively inhibited orthotopic tumor growth. This magneto-PDT paradigm established a novel strategy for manipulating spin-dependent photosensitization processes in biological applications.
Collapse
Affiliation(s)
- Jiuyu Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Junying Ding
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Zhuoran Xia
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Zhuo Yang
- Department of Gynaecology, Cancer Hospital of Dalian University of Technology; Cancer Hospital of China Medical University; Liaoning Cancer Hospital & Institute, Shenyang 110001, China
| | - Chengyuan Lv
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shenglin Zong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Danhong Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Zhang X, Lin J, Huang P. Design strategies and biomedical applications of organic NIR-IIb fluorophores. Chem Commun (Camb) 2025; 61:3447-3460. [PMID: 39879086 DOI: 10.1039/d4cc04532g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings in vivo. Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes. The design strategies of cyanine dyes involve repurposing of the existing NIR dyes, conjugate reinforcement and regulation of the aggregation state. For D-A-D small molecule dyes, strategies mainly incorporate the extension of the conjugate skeleton, introduction of shielding units, and acceptor/donor engineering. We further describe recent biomedical applications including biomedical imaging and imaging-guided therapy, and conclude by clarifying the current challenges and prospects of NIR-IIb FLI.
Collapse
Affiliation(s)
- Xinming Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Janeková H, Fisher S, Šolomek T, Štacko P. Surfing the limits of cyanine photocages one step at a time. Chem Sci 2025; 16:1677-1683. [PMID: 39568875 PMCID: PMC11575602 DOI: 10.1039/d4sc07165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Near-infrared light-activated photocages enable controlling molecules with tissue penetrating light. Understanding the structural aspects that govern the photouncaging process is essential to enhancing their efficacy, crucial for practical applications. Here we explore the impact of thermodynamic stabilization on contact ion pairs in cyanine photocages by quaternarization of the carbon reaction centers. This strategy enables the first direct uncaging of carboxylate payloads independent of oxygen, resulting in a remarkable two-orders-of-magnitude enhancement in uncaging efficiency. Our computational analyses reveal that these modifications confer a kinetic instead of thermodynamic effect, reducing ion-ion interactions and allowing complete separation of free ions while inhibiting recombination. We demonstrate that, while thermodynamic stabilization is effective in traditional chromophores operating at shorter wavelengths, it rapidly reaches its thermodynamic limitations in NIR photocages by compromising the photocage stability in the dark. Thanks to these findings, we establish that activation of cyanine photocages is limited to wavelengths of light below 1000 nm. Our work illuminates the path to improving uncaging cross-sections in NIR photocages by prioritizing kinetic trapping and separation of ions.
Collapse
Affiliation(s)
- Hana Janeková
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Sergey Fisher
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tomáš Šolomek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Peter Štacko
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
4
|
Li Y, Qu F, Wan F, Zhong C, Rao J, Liu Y, Li Z, Zhu J, Li Z. Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy. Nat Commun 2025; 16:762. [PMID: 39824804 PMCID: PMC11748625 DOI: 10.1038/s41467-024-55429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2024] [Indexed: 01/20/2025] Open
Abstract
Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions. Dynamic tuning of fluorescence characteristics and ROS generation is achieved at the aggregate level, resulting in an impressive type I ROS generation under 760 nm light irradiation, accompanied by efficient NIR-II fluorescence emission excited at 808 nm. As a result, excitation wavelength selective NIR-II fluorescence imaging-guided PDT has been successfully demonstrated for tumor diagnosis and therapeutics of female mice.
Collapse
Affiliation(s)
- Yibin Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Fei Qu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Fang Wan
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, China
| | - Jingyi Rao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, HUST, Wuhan, China
| | - Yijing Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, HUST, Wuhan, China.
| | - Zhen Li
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, HUST, Wuhan, China
| | - Zhong'an Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, HUST, Wuhan, China.
| |
Collapse
|
5
|
Shen T, Li M, Tian B, Liu W, Chu L, Yu P, Zhou H, Han Y, Ding C, Sai S. Calcofluor White-Phosphatidylethanolamine Conjugate-Enhanced Ethosomal Delivery of Voriconazole for Targeting Candida albicans. Int J Nanomedicine 2024; 19:13047-13069. [PMID: 39654804 PMCID: PMC11626965 DOI: 10.2147/ijn.s488456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The increasing prevalence of systemic fungal infections, especially among immunocompromised individuals, highlights the need for advancements in targeted and effective antifungal treatments. This study presents a novel nanomaterial, CFW-phosphatidylethanolamine conjugate (CFW-PEc), designed to enhance the delivery and efficacy of antifungal agents by targeting fungal cell walls through specific chitin binding. Ethosomes, lipid-based nanocarriers known for their ability to improve drug delivery across skin and cell membranes, were utilized in this study. Methods The physicochemical characteristics of voriconazole-loaded CFW-PEc ethosomes (CFW-PEc-VRC-ethosomes) were examined, including particle size, zeta potential, and entrapment efficiency. Antifungal efficacy of CFW-PEc-VRC-ethosomes was evaluated, including antifungal activity in vitro, CFW-PEc-ethosomes cellular uptake, and models of animal infection and imaging analyses. Results In vitro experiments demonstrated a concentration-dependent inhibition of C. albicans growth by CFW-PEc, with cell inhibition rates reaching nearly 100% at 256 μM. In vivo investigations confirmed a 5-fold reduction in fungal burden in the liver and a 7.8-fold reduction in the kidney compared to the control group following treatment with CFW-PEc (0.1 μM)-VRC-ethosomes. Imaging analyses also confirmed the extended tissue retention of fluorescent dye-loaded CFW-PEc-ethosomes in mice, further underscoring their potential for clinical use. Discussion The targeted delivery of antifungal medications via ethosomes coated with CFW-PEc presents a promising strategy to improve antifungal effectiveness while reducing adverse effects, marking a significant advancement in fungal infection therapy.
Collapse
Affiliation(s)
- Ting Shen
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Mengxing Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Wei Liu
- College of Life and Health Science, Northeastern University, Shenyang, 110015, People’s Republic of China
| | - Lili Chu
- Department of Pathology, Yantai Fushan District People’s Hospital, Yantai, Shandong, 265500, People’s Republic of China
| | - Pengfei Yu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 266071, People’s Republic of China
| | - Yanchun Han
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, 110015, People’s Republic of China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| |
Collapse
|
6
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65754-65778. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
7
|
Lin HH, Lim I, Sletten EM. Counterion Exchange Enhances the Brightness and Photostability of a Fluorous Cyanine Dye. Chemistry 2024; 30:e202402514. [PMID: 39231339 PMCID: PMC12068422 DOI: 10.1002/chem.202402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Fluorofluorophores are a unique class of fluorophores that can be solubilized in perfluorocarbons (PFCs) and used to study biological systems. However, because of the low dielectric constant and high oxygen solubility in the fluorous phase, the brightness and photostability of the fluorofluorophores are significantly diminished. Here, we leveraged the tight ion pairing in the fluorous phase to improve the photophysical properties of a fluorous soluble pentamethine dye (FCy5) via counterion exchange. We found that larger, softer, fluorinated, aryl borate counterions promote the ideal polymethine state where charge delocalization across the polymethine chain increases the brightness (6-fold) and photostability (55-fold) of FCy5.
Collapse
Affiliation(s)
- Helen H Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
- Present Address: Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Caldwell DR, Townsend KM, Kolbaba-Kartchner B, Hadjian T, Ivanic J, Love AC, Malvar B, Mills J, Prescher JA, Schnermann MJ. Expedient Synthesis and Characterization of π-Extended Luciferins. J Org Chem 2024; 89:14625-14633. [PMID: 38096133 PMCID: PMC11323054 DOI: 10.1021/acs.joc.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Bioluminescence imaging enables the sensitive tracking of cell populations and the visualization of biological processes in living systems. Bioluminescent luciferase/luciferin pairs with far-red and near-infrared emission benefit from the reduced competitive absorption by blood and tissue while also facilitating multiplexing strategies. Luciferins with extended π-systems, such as AkaLumine and recently reported CouLuc-1 and -3, can be used for bioluminescence imaging in this long wavelength regime. Existing synthetic routes to AkaLumine and similar π-extended compounds require a multistep sequence to install the thiazoline heterocycle. Here we detail the development of a two-step strategy for accessing these molecules via a Horner-Wadsworth-Emmons reaction and cysteine condensation sequence from readily available aldehyde starting materials. We detail an improved synthesis of AkaLumine, as well as the corresponding two-carbon homologues, Tri- and Tetra-AkaLumine. We then extended this approach to prepare coumarin- and naphthalene-derived luciferins. These putative luciferins were tested against a panel of luciferases to identify capable emitters. Of these, an easily prepared naphthalene derivative exhibits photon emission on par with that of the broadly used Akaluc/AkaLumine pair with similar emission maxima. Overall, this chemistry provides efficient access to several bioluminescent probes for a variety of imaging applications.
Collapse
Affiliation(s)
- Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Katherine M Townsend
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Tanya Hadjian
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Beatrice Malvar
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jeremy Mills
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
9
|
Han F, Zhou X, Wang Z, Cai L, Zhang H, Shi T, Zhang Z, Lu Y, Wu K, Long S, Sun W, Du J, Fan J, Peng X. Red-Light Triggered H-Abstraction Photoinitiators for the Efficient Oxygen-Independent Therapy of Hypoxic Tumors. Angew Chem Int Ed Engl 2024; 63:e202408769. [PMID: 38960984 DOI: 10.1002/anie.202408769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.
Collapse
Affiliation(s)
- Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Zhenyu Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo, 315016, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo, 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Pallavicini P, Colombi C, Baccini C, Gatti B, D'Alfonso L, Dacarro G, Cattani S, Diaz Fernandez YA, Doveri L, Milanese C, Secchi A. Thiolated Cyanines Appended to Partially Pegylated Gold Nanoparticles for Fluorescence Quenching of Two-Channel Photothermal Inks. Chemistry 2024; 30:e202400777. [PMID: 38924153 DOI: 10.1002/chem.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Following a new approach, we prepared a nanoink with two separate photothermally responsive absorption bands. One is the localized surface plasmon resonance (LSPR) absorption of gold nanoparticles (AuNP, d=17 nm), the second is the absorption band of two cyanine (Cy) dyes, Cy7-C6 or Cy7-C11, grafted to the AuNP surface through thiolated bridges of different lengths: the close proximity to the Au surface induces full quenching of the Cy fluorescence, resulting in thermal relaxation on irradiation. Attempts to full coat AuNP with the lipophilic Cy7-C6 and Cy7-C11 lead to precipitation from aqueous solutions. We thus prepared AuNP with partial pegylation (30, 50, or 70 %), using a long chain thiol-terminated PEG bearing a -COOH function. Addition until saturation of either Cy7-C6 or Cy7-C11 to the partially pegylated AuNP gave the AuNP@Cy/PEGX% hybrids (X=30, 50, 70) that are stable in water and in the water/alcohol mixtures used to prepare the nanoinks. Further overcoating of AuNP@Cy7-C6/PEG50 % with PAH (polyallylamine hydrochloride) avoids LSPR hybridization in the dry nanoink printouts, that present two separate bands. When irradiated with laser sources near their absorption maxima, the printouts of the AuNP@Cy7-C6/PEG50 %@PAH nanoink respond on two channels, giving different temperature increases depending on the irradiation wavelengths. This enhances the potentiality of use of these nanoinks for photothermal anticounterfait printouts, making more difficult to reproduce the correct ΔT vs λirradiation output.
Collapse
Affiliation(s)
| | - Chiara Colombi
- Department of Chemistry, University of Pavia, v. Taramelli 12, 27100, Pavia, Italy
| | - Caterina Baccini
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Beatrice Gatti
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | - Laura D'Alfonso
- Department of Physics "G. Occhialini", University Milano Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, v. Taramelli 12, 27100, Pavia, Italy
| | - Silvia Cattani
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| | | | - Lavinia Doveri
- Department of Chemistry, University of Pavia, v. Taramelli 12, 27100, Pavia, Italy
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, v. Taramelli 12, 27100, Pavia, Italy
| | - Andrea Secchi
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parco Area delle Scienze, 17/A, 43124, Parma, Italy
| |
Collapse
|
11
|
Zhao X, Du J, Sun W, Fan J, Peng X. Regulating Charge Transfer in Cyanine Dyes: A Universal Methodology for Enhancing Cancer Phototherapeutic Efficacy. Acc Chem Res 2024; 57:2582-2593. [PMID: 39152945 DOI: 10.1021/acs.accounts.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Due to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis. Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, 315016 Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
12
|
Müller M, Liu N, Gujrati V, Valavalkar A, Hartmann S, Anzenhofer P, Klemm U, Telek A, Dietzek-Ivanšić B, Hartschuh A, Ntziachristos V, Thorn-Seshold O. Merged Molecular Switches Excel as Optoacoustic Dyes: Azobenzene-Cyanines Are Loud and Photostable NIR Imaging Agents. Angew Chem Int Ed Engl 2024; 63:e202405636. [PMID: 38807438 DOI: 10.1002/anie.202405636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.
Collapse
Affiliation(s)
- Markus Müller
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nian Liu
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Abha Valavalkar
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Sean Hartmann
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | - András Telek
- Department of Pharmacy, LMU Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, University of Jena, Lessingstraße 4, Jena, 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Achim Hartschuh
- Department of Chemistry, LMU Munich, Butenandtstrasse 8, Munich, 81377, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM) School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | | |
Collapse
|
13
|
Zhao L, Zhu H, Duo YY, Wang ZG, Pang DW, Liu SL. A Cyanine with 83.2% Photothermal Conversion Efficiency and Absorption Wavelengths over 1200 nm for Photothermal Therapy. Adv Healthc Mater 2024; 13:e2304421. [PMID: 38780250 DOI: 10.1002/adhm.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Developing small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, six polymethine cyanine molecules based on the structure of indocyanine green are synthesized by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, IC-1224 is obtained with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - You-Yang Duo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Okoročenkova J, Filgas J, Khan NM, Slavíček P, Klán P. Thermal Truncation of Heptamethine Cyanine Dyes. J Am Chem Soc 2024; 146:19768-19781. [PMID: 38995720 PMCID: PMC11273355 DOI: 10.1021/jacs.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Cyanine dyes are a class of organic, usually cationic molecules containing two nitrogen centers linked through conjugated polymethine chains. The synthesis and reactivity of cyanine derivatives have been extensively investigated for decades. Unlike the recently described phototruncation process, the thermal truncation (chain shortening) reaction is a phenomenon that has rarely been reported for these important fluorophores. Here, we present a systematic investigation of the truncation of heptamethine cyanines (Cy7) to pentamethine (Cy5) and trimethine (Cy3) cyanines via homogeneous, acid-base-catalyzed nucleophilic exchange reactions. We demonstrate how different substituents at the C3' and C4' positions of the chain and different heterocyclic end groups, the presence of bases, nucleophiles, and oxygen, solvent properties, and temperature affect the truncation process. The mechanism of chain shortening, studied by various analytical and spectroscopic techniques, was verified by extensive ab initio calculation, implying the necessity to model catalytic reactions by highly correlated wave function-based methods. In this study, we provide critical insight into the reactivity of cyanine polyene chains and elucidate the truncation mechanism and methods to mitigate side processes that can occur during the synthesis of cyanine derivatives. In addition, we offer alternative routes to the preparation of symmetrical and unsymmetrical meso-substituted Cy5 derivatives.
Collapse
Affiliation(s)
- Jana Okoročenkova
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Josef Filgas
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Nasrulla Majid Khan
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| |
Collapse
|
15
|
Vahdani A, Moemeni M, Holmes D, Lunt RR, Jackson JE, Borhan B. Mechanistic Insight into the Thermal "Blueing" of Cyanine Dyes. J Am Chem Soc 2024; 146:19756-19767. [PMID: 38989979 PMCID: PMC11273608 DOI: 10.1021/jacs.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
In recent work to develop cyanine dyes with especially large Stokes shifts, we encountered a "blueing" reaction, in which the heptamethine cyanine dye Cy7 (IUPAC: 1,3,3-trimethyl-2-((1E,3E,5E)-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium) undergoes shortening in two-carbon steps to form the pentamethine (Cy5) and trimethine (Cy3) analogs. Each step blue-shifts the resulting absorbance wavelength by ca. 100 nm. Though photochemical and oxidative chain-shortening reactions had been noted previously, it is simple heating alone or with amine bases that effects this unexpected net C2H2 excision. Explicit acetylene loss would be too endothermic to merit consideration. Our mechanistic studies using 2H labeling, mass spectrometric and NMR spectroscopic analyses, and quantum chemical modeling point instead to electrocyclic closure and aromatization of the heptamethine chain in Cy7 forming Fischer's base FB (1,3,3-trimethyl-2-methyleneindoline), a reactive carbon nucleophile that initiates chain shortening of the cyanine dyes by attack on their polymethine backbones. The byproduct is the cationic indolium species TMP (IUPAC: 1,3,3 trimethyl-2-phenyl indolium).
Collapse
Affiliation(s)
- Aria Vahdani
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Daniel Holmes
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - James E. Jackson
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
17
|
Li H, Wang J, Jiao L, Hao E. BODIPY-based photocages: rational design and their biomedical application. Chem Commun (Camb) 2024; 60:5770-5789. [PMID: 38752310 DOI: 10.1039/d4cc01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocages, also known as photoactivated protective groups (PPGs), have been utilized to achieve controlled release of target molecules in a non-invasive and spatiotemporal manner. In the past decade, BODIPY fluorophores, a well-established class of fluorescent dyes, have emerged as a novel type of photoactivated protective group capable of efficiently releasing cargo species upon irradiation. This is due to their exceptional properties, including high molar absorption coefficients, resistance to photochemical and thermal degradation, multiple modification sites, favorable uncaging quantum yields, and highly adjustable spectral properties. Compared to traditional photocages that mainly absorb UV light, BODIPY-based photocages that absorb visible/near-infrared (Vis/NIR) light offer advantages such as deeper tissue penetration and reduced bio-autofluorescence, making them highly suitable for various biomedical applications. Consequently, different types of photoactivated protective groups based on the BODIPY skeleton have been established. This highlight provides a comprehensive overview of the strategies employed to construct BODIPY photocages by substituting leaving groups at different positions within the BODIPY fluorophore, including the meso-methyl position, boron position, 2,6-position, and 3,5-position. Furthermore, the application of these BODIPY photocages in biomedical fields, such as fluorescence imaging and controlled release of active species, is discussed.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Jun Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
18
|
Wu W, Yan K, He Z, Zhang L, Dong Y, Wu B, Liu H, Wang S, Zhang F. 2X-Rhodamine: A Bright and Fluorogenic Scaffold for Developing Near-Infrared Chemigenetic Indicators. J Am Chem Soc 2024. [PMID: 38605649 DOI: 10.1021/jacs.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemigenetic fusion of synthetic dyes with genetically encoded protein tags presents a promising avenue for in vivo imaging. However, its full potential has been hindered by the lack of bright and fluorogenic dyes operating in the "tissue transparency" near-infrared window (NIR, 700-1700 nm). Here, we report 2X-rhodamine (2XR), a novel bright scaffold that allows for the development of live-cell-compatible, NIR-excited variants with strong fluorogenicity beyond 1000 nm. 2XR utilizes a rigidified π-skeleton featuring dual atomic bridges and functions via a spiro-based fluorogenic mechanism. This design affords longer wavelengths, higher quantum yield (ΦF = 0.11), and enhanced fluorogenicity in water when compared to the phosphine oxide-cored, or sulfone-cored rhodamine, the NIR fluorogenic benchmarks currently used. We showcase their bright performance in video-rate dynamic imaging and targeted deep-tissue molecular imaging in vivo. Notably, we develop a 2XR variant, 2XR715-HTL, an NIR fluorogenic ligand for the HaloTag protein, enabling NIR genetically encoded calcium sensing and the first demonstration of in vivo chemigenetic labeling beyond 1000 nm. Our work expands the library of NIR fluorogenic tools, paving the way for in vivo imaging and sensing with the chemigenetic approach.
Collapse
Affiliation(s)
- Wenxiao Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Yuyao Dong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Hongyue Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Russo M, Janeková H, Meier D, Generali M, Štacko P. Light in a Heartbeat: Bond Scission by a Single Photon above 800 nm. J Am Chem Soc 2024; 146:8417-8424. [PMID: 38499198 PMCID: PMC10979397 DOI: 10.1021/jacs.3c14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Photocages enable scientists to take full control over the activity of molecules using light as a biocompatible stimulus. Their emerging applications in photoactivated therapies call for efficient uncaging in the near-infrared (NIR) window, which represents a fundamental challenge. Here, we report synthetically accessible cyanine photocages that liberate alcohol, phenol, amine, and thiol payloads upon irradiation with NIR light up to 820 nm in aqueous media. The photocages display a unique chameleon-like behavior and operate via two distinct uncaging mechanisms: photooxidation and heterolytic bond cleavage. The latter process constitutes the first example of a direct bond scission by a single photon ever observed in cyanine dyes or at wavelengths exceeding 800 nm. Modulation of the beating rates of human cardiomyocytes that we achieved by light-actuated release of adrenergic agonist etilefrine at submicromolar concentrations and low NIR light doses (∼12 J cm-2) highlights the potential of these photocages in biology and medicine.
Collapse
Affiliation(s)
- Marina Russo
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Hana Janeková
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Debora Meier
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Melanie Generali
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Peter Štacko
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
20
|
Han F, Abbas Abedi SA, He S, Zhang H, Long S, Zhou X, Chanmungkalakul S, Ma H, Sun W, Liu X, Du J, Fan J, Peng X. Aryl-Modified Pentamethyl Cyanine Dyes at the C2' Position: A Tunable Platform for Activatable Photosensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305761. [PMID: 38063803 PMCID: PMC10870032 DOI: 10.1002/advs.202305761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Indexed: 12/24/2023]
Abstract
Pentamethyl cyanine dyes are promising fluorophores for fluorescence sensing and imaging. However, advanced biomedical applications require enhanced control of their excited-state properties. Herein, a synthetic approach for attaching aryl substituents at the C2' position of the thio-pentamethine cyanine (TCy5) dye structure is reported for the first time. C2'-aryl substitution enables the regulation of both the twisted intramolecular charge transfer (TICT) and photoinduced electron transfer (PET) mechanisms to be regulated in the excited state. Modulation of these mechanisms allows the design of a nitroreductase-activatable TCy5 fluorophore for hypoxic tumor photodynamic therapy and fluorescence imaging. These C2'-aryl TCy5 dyes provide a tunable platform for engineering cyanine dyes tailored to sophisticated biological applications, such as photodynamic therapy.
Collapse
Affiliation(s)
- Fuping Han
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Syed Ali Abbas Abedi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Shan He
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced StudyThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Han Zhang
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Saran Long
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Xiao Zhou
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | | | - He Ma
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyDalian University of Technology26 Yucai Road, Jiangbei DistrictNingbo315016China
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyDalian University of Technology26 Yucai Road, Jiangbei DistrictNingbo315016China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyDalian University of Technology26 Yucai Road, Jiangbei DistrictNingbo315016China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsDalian University of TechnologyDalian116024China
| |
Collapse
|
21
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
22
|
Martin A, Rivera-Fuentes P. A general strategy to develop fluorogenic polymethine dyes for bioimaging. Nat Chem 2024; 16:28-35. [PMID: 38012391 PMCID: PMC10774129 DOI: 10.1038/s41557-023-01367-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence imaging is an invaluable tool to study biological processes and further progress depends on the development of advanced fluorogenic probes that reach intracellular targets and label them with high specificity. Excellent fluorogenic rhodamine dyes have been reported, but they often require long and low-yielding syntheses, and are spectrally limited to the visible range. Here we present a general strategy to transform polymethine compounds into fluorogenic dyes using an intramolecular ring-closure approach. We illustrate the generality of this method by creating both spontaneously blinking and no-wash, turn-on polymethine dyes with emissions across the visible and near-infrared spectrum. These probes are compatible with self-labelling proteins and small-molecule targeting ligands, and can be combined with rhodamine-based dyes for multicolour and fluorescence lifetime multiplexing imaging. This strategy provides access to bright, fluorogenic dyes that emit at wavelengths that are more red-shifted compared with those of existing rhodamine-based dyes.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
23
|
Lapoot L, Wang C, Matikonda SS, Schnermann MJ, Greer A. Bluer Phototruncation: Retro-Diels-Alder of Heptamethine Cyanine to Trimethine Cyanine through an Allene Hydroperoxide Intermediate. J Org Chem 2023. [PMID: 38051763 DOI: 10.1021/acs.joc.3c02245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The photoconversion of heptamethine to pentamethine cyanines and of pentamethine to trimethine cyanines was recently reported. Here, we report mechanistic studies and initial experimental evidence for a previously unexplored 4-carbon truncation reaction that converts the simplest heptamethine cyanine to the corresponding trimethine cyanine. We propose a DFT-supported model describing a singlet oxygen (1O2)-mediated formation of an allene hydroperoxide intermediate and subsequent 4-carbon loss through a retro-Diels-Alder process. Fluorescence and mass spectrometry measurements provide evidence of this direct conversion process. This 4-carbon truncation reaction adds to a growing body of cyanine reactivity and may provide an optical tool leading to a substantial blue-shift (Δλem) of ∼200 nm.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Connor Wang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
24
|
Liang X, Qian S, Lou Z, Hu R, Hou Y, Chen PR, Fan X. Near Infrared Light-Triggered Photocatalytic Decaging for Remote-Controlled Spatiotemporal Activation in Living Mice. Angew Chem Int Ed Engl 2023; 62:e202310920. [PMID: 37842955 DOI: 10.1002/anie.202310920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Spatiotemporal manipulation of biological processes in living animals using noninvasive, remote-controlled stimuli is a captivating but challenging endeavor. Herein, we present the development of a biocompatible photocatalytic technology termed CAT-NIR, which uses external near infrared light (NIR, 740 nm) to trigger decaging reactions in living mice. The Os(II) terpyridine complex was identified as an efficient NIR photocatalyst for promoting deboronative hydroxylation reactions via superoxide generation in the presence of NIR light, resulting in the deprotection of phenol groups and the release of bioactive molecules under living conditions. The validation of the CAT-NIR system was demonstrated through the NIR-triggered rescue of fluorophores, prodrugs as well as biomolecules ranging from amino acids, peptides to proteins. Furthermore, by combining genetic code expansion and computer-aided screening, CAT-NIR could regulate affibody binding to the cell surface receptor HER2, providing a selective cell tagging technology through external NIR light. In particular, the tissue-penetrating ability of NIR light allowed for facile prodrug activation in living mice, enabling noninvasive, remote-controlled rescue of drug molecules. Given its broad adaptability, this CAT-NIR system may open new opportunities for manipulating the functions of bioactive molecules in living animals using external NIR light with spatiotemporal resolution.
Collapse
Grants
- 22222701, 22077004, 92253301, 21937001, 22137001 National Natural Science Foundation of China
- 22222701, 22077004, 92253301, 22321005, 21937001, 22137001 National Natural Science Foundation of China
- 2019YFA0904201, 2022YFA1304700, 2022YFE0114900 Ministry of Science and Technology
- Z200010, Z221100007422046 Beijing Municipal Science and Technology Commission
- YGLX202338 Beijing Hospitals Authority Clinical Medicine Development Funding
- Li Ge-Zhao Ning Life Science Junior Research Fellowship
Collapse
Affiliation(s)
- Xuan Liang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhizheng Lou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Renming Hu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuchen Hou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Gandioso A, Izquierdo-García E, Mesdom P, Arnoux P, Demeubayeva N, Burckel P, Saubaméa B, Bosch M, Frochot C, Marchán V, Gasser G. Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770 nm Near-Infrared Light. Chemistry 2023; 29:e202301742. [PMID: 37548580 DOI: 10.1002/chem.202301742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Eduardo Izquierdo-García
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | | | | | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging platform, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006, Paris, France
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Av. Diagonal, 643, Barcelona, 08028, Spain
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, 54000, Nancy, France
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
26
|
Su Q, Zhang Y, Zhu S. Site-specific albumin tagging with chloride-containing near-infrared cyanine dyes: molecular engineering, mechanism, and imaging applications. Chem Commun (Camb) 2023; 59:13125-13138. [PMID: 37850230 DOI: 10.1039/d3cc04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Near-infrared dyes, particularly cyanine dyes, have shown great potential in biomedical imaging due to their deep tissue penetration, high resolution, and minimal tissue autofluorescence/scattering. These dyes can be adjusted in terms of absorption and emission wavelengths by modifying their chemical structures. The current issues with cyanine dyes include aggregation-induced quenching, poor photostability, and short in vivo circulation time. Encapsulating cyanine dyes with albumin, whether exogenous or endogenous, has been proven to be an effective strategy for improving their brightness and pharmacokinetics. In detail, the chloride-containing (Cl-containing) cyanine dyes have been found to selectively bind to albumin to achieve site-specific albumin tagging, resulting in enhanced optical properties and improved biosafety. This feature article provides an overview of the progress in the covalent binding of Cl-containing cyanine dyes with albumin, including molecular engineering methods, binding sites, and the selective binding mechanism. The improved optical properties of cyanine dyes and albumin complexes have led to cutting-edge applications in biological imaging, such as tumor imaging (diagnostics) and imaging-guided surgery.
Collapse
Affiliation(s)
- Qi Su
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
| |
Collapse
|
27
|
Ma Y, Liu L, Ye Z, Xu L, Li Y, Liu S, Song G, Zhang XB. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Sci Bull (Beijing) 2023; 68:2382-2390. [PMID: 37679256 DOI: 10.1016/j.scib.2023.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
28
|
Herrera CK, Vahdani A, Yang C, Bates M, Lunt SY, Borhan B, Lunt RR. Enhanced Lifetime of Cyanine Salts in Dilute Matrix Luminescent Solar Concentrators via Counterion Tuning. ACS PHOTONICS 2023; 10:3195-3202. [PMID: 39071812 PMCID: PMC11281435 DOI: 10.1021/acsphotonics.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organic luminophores offer great potential for energy harvesting and light emission due to tunable spectral properties, strong luminescence, high solubility, and excellent wavelength-selectivity. To realize their full potential, the lifetimes of luminophores must extend to many years under illumination. Many organic luminophores, however, have a tendency to degrade and undergo rapid photobleaching, leading to the perception of intrinsic instability of organic molecules. In this work we demonstrate that by exchanging the counterion of a heptamethine cyanine salt the photostability and corresponding lifetime of dilute cyanine salts can be enhanced by orders of magnitude from 10 hours to an extrapolated lifetime of greater than 65,000 hours under illumination. To help correlate and comprehend the underlying mechanism behind this phenomenon, the water contact angle and binding energy of each pairing were measured and calculated. We find that increased water contact angle, and therefore increasing hydrophobicity, generally correlate to improved lifetimes. Similarly, a lower absolute binding energy between cation and anion correlates to increased lifetimes. Utilizing the binding energy formalism, we predict the stability of a new anion and experimentally verify with good consistency. Moving forward, these factors could be used to rapidly screen and identify highly photostable organic luminophore salt systems for a range of energy harvesting and light emitting applications.
Collapse
Affiliation(s)
- Christopher K. Herrera
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aria Vahdani
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chenchen Yang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew Bates
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sophia Y. Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
29
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
30
|
Liu Z, Mo S, Hao Z, Hu L. Recent Progress of Spectroscopic Probes for Peroxynitrite and Their Potential Medical Diagnostic Applications. Int J Mol Sci 2023; 24:12821. [PMID: 37629002 PMCID: PMC10454944 DOI: 10.3390/ijms241612821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Peroxynitrite (ONOO-) is a crucial reactive oxygen species that plays a vital role in cellular signal transduction and homeostatic regulation. Determining and visualizing peroxynitrite accurately in biological systems is important for understanding its roles in physiological and pathological activity. Among the various detection methods, fluorescent probe-based spectroscopic detection offers real-time and minimally invasive detection, high sensitivity and selectivity, and easy structural and property modification. This review categorizes fluorescent probes by their fluorophore structures, highlighting their chemical structures, recognition mechanisms, and response behaviors in detail. We hope that this review could help trigger novel ideas for potential medical diagnostic applications of peroxynitrite-related molecular diseases.
Collapse
Affiliation(s)
| | | | | | - Liming Hu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (S.M.); (Z.H.)
| |
Collapse
|
31
|
Schnermann MJ, Lavis LD. Rejuvenating old fluorophores with new chemistry. Curr Opin Chem Biol 2023; 75:102335. [PMID: 37269674 PMCID: PMC10524207 DOI: 10.1016/j.cbpa.2023.102335] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 376, Frederick, MD 20850, USA.
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
32
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
33
|
López-Corrales M, Rovira A, Gandioso A, Nonell S, Bosch M, Marchán V. Mitochondria-Targeted COUPY Photocages: Synthesis and Visible-Light Photoactivation in Living Cells. J Org Chem 2023. [PMID: 37209100 DOI: 10.1021/acs.joc.3c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Releasing bioactive molecules in specific subcellular locations from the corresponding caged precursors offers great potential in photopharmacology, especially when using biologically compatible visible light. By taking advantage of the intrinsic preference of COUPY coumarins for mitochondria and their long wavelength absorption in the visible region, we have synthesized and fully characterized a series of COUPY-caged model compounds to investigate how the structure of the coumarin caging group affects the rate and efficiency of the photolysis process. Uncaging studies using yellow (560 nm) and red light (620 nm) in phosphate-buffered saline medium have demonstrated that the incorporation of a methyl group in a position adjacent to the photocleavable bond is particularly important to fine-tune the photochemical properties of the caging group. Additionally, the use of a COUPY-caged version of the protonophore 2,4-dinitrophenol allowed us to confirm by confocal microscopy that photoactivation can occur within mitochondria of living HeLa cells upon irradiation with low doses of yellow light. The new photolabile protecting groups presented here complement the photochemical toolbox in therapeutic applications since they will facilitate the delivery of photocages of biologically active compounds into mitochondria.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, E-08017 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
34
|
Love AC, Caldwell DR, Kolbaba-Kartchner B, Townsend KM, Halbers LP, Yao Z, Brennan CK, Ivanic J, Hadjian T, Mills JH, Schnermann MJ, Prescher JA. Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging. J Am Chem Soc 2023; 145:3335-3345. [PMID: 36745536 PMCID: PMC10519142 DOI: 10.1021/jacs.2c07220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multicomponent bioluminescence imaging in vivo requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes. Complementary mutant luciferases for the CouLuc-3 analogues were also identified. The brightest probes enabled sensitive imaging in vivo. The CouLuc-3 scaffolds are also orthogonal to popular bioluminescent reporters and can be used for multicomponent imaging applications. Collectively, this work showcases a new set of bioluminescent tools that can be readily implemented for multiplexed imaging in a variety of biological settings.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Cancer for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Katherine M Townsend
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lila P Halbers
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Zi Yao
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Caroline K Brennan
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Tanya Hadjian
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jeremy H Mills
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Cancer for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
35
|
Li M, Zhang Y, Ma J, Du J. Albumin-based nanoparticle for dual-modality imaging of the lymphatic system. RSC Adv 2023; 13:2248-2255. [PMID: 36741156 PMCID: PMC9838117 DOI: 10.1039/d2ra07414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels, lymph nodes, and lymphoid organs. The current understanding of the basic mechanism and framework of the lymphatic system is relatively limited and not ideal for exploring the function of the lymphatic system, diagnosing lymphatic system diseases, and controlling tumor metastasis. Imaging modalities for evaluating lymphatic system diseases mainly include lymphatic angiography, reactive dye lymphatic angiography, radionuclide lymphatic angiography, computed tomography, and ultrasonography. However, these are insufficient for clinical diagnosis. Some novel imaging methods, such as magnetic resonance imaging, positron emission computed tomography, single-photon emission computed tomography, contrast-enhanced ultrasonography, and near-infrared imaging with agents such as cyanine dyes, can reveal lymphatic system information more accurately and in detail. We fabricated an albumin-based fluorescent probe for dual-modality imaging of the lymphatic system. A near-infrared cyanine dye, IR-780, was absorbed into bovine serum albumin (BSA), which was covalently linked to a molecule of diethylenetriaminepentaacetic acid to chelate gadolinium Gd3+. The fabricated IR-780@BSA@Gd3+ nanocomposite demonstrates strong fluorescence and high near-infrared absorption and can be used as a T1 contrast agent for magnetic resonance imaging. In vivo dual-modality fluorescence and magnetic resonance imaging showed that IR-780@BSA@Gd3+ rapidly returned to the heart through the lymphatic circulation after it was injected into the toe webs of mice, facilitating good lymphatic imaging. The successful fabrication of the new IR-780@BSA@Gd3+ nanocomposite will facilitate the study of the mechanism and morphological structure of the lymphatic system.
Collapse
Affiliation(s)
- Mingze Li
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Yundong Zhang
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jinli Ma
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jianshi Du
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| |
Collapse
|
36
|
Min Q, Ji X. Strategies toward Metal-Free Carbon Monoxide Prodrugs: An Update. ChemMedChem 2023; 18:e202200500. [PMID: 36251749 DOI: 10.1002/cmdc.202200500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Carbon monoxide is an important gasotransmitter in mammals, with pleiotropic therapeutic potential against a wide range of human diseases. However, clinical translation of CO is severely hampered by the lack of a reliable CO delivery form. The development of metal-free CO prodrugs is the key to resolving such delivery issues. Over the past three years, some new exciting progress has been made in this field. In this review, we highlight these advances and discuss related issues.
Collapse
Affiliation(s)
- Qingqiang Min
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| |
Collapse
|
37
|
Liu W, Li M, Tian B, Yang X, Du W, Wang X, Zhou H, Ding C, Sai S. Calcofluor white-cholesteryl hydrogen succinate conjugate mediated liposomes for enhanced targeted delivery of voriconazole into Candida albicans. Biomater Sci 2023; 11:307-321. [DOI: 10.1039/d2bm01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A nano antifungal-drug delivery system is designed to increase voriconazole efficacy by specifically binding to chitin in the fungal cell wall.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Mengshun Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xuesong Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Wei Du
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Xiuwen Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong 266071, China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| |
Collapse
|
38
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
39
|
Clickable C-Glycosyl Scaffold for the Development of a Dual Fluorescent and [ 18F]fluorinated Cyanine-Containing Probe and Preliminary In Vitro/Vivo Evaluation by Fluorescence Imaging. Pharmaceuticals (Basel) 2022; 15:ph15121490. [PMID: 36558941 PMCID: PMC9782470 DOI: 10.3390/ph15121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Considering the individual characteristics of positron emission tomography (PET) and optical imaging (OI) in terms of sensitivity, spatial resolution, and tissue penetration, the development of dual imaging agents for bimodal PET/OI imaging is a growing field. A current major breakthrough in this field is the design of monomolecular agent displaying both a radioisotope for PET and a fluorescent dye for OI. We took advantage of the multifunctionalities allowed by a clickable C-glycosyl scaffold to gather the different elements. We describe, for the first time, the synthesis of a cyanine-based dual PET/OI imaging probe based on a versatile synthetic strategy and its direct radiofluorination via [18F]F-C bond formation. The non-radioactive dual imaging probe coupled with two c(RGDfK) peptides was evaluated in vitro and in vivo in fluorescence imaging. The binding on αvβ3 integrin (IC50 = 16 nM) demonstrated the efficiency of the dimeric structure and PEG linkers in maintaining the affinity. In vivo fluorescence imaging of U-87 MG engrafted nude mice showed a high tumor uptake (40- and 100-fold increase for orthotopic and ectopic brain tumors, respectively, compared to healthy brain). In vitro and in vivo evaluations and resection of the ectopic tumor demonstrated the potential of the conjugate in glioblastoma cancer diagnosis and image-guided surgery.
Collapse
|
40
|
Zhao X, He S, Chi W, Liu X, Chen P, Sun W, Du J, Fan J, Peng X. An Approach to Developing Cyanines with Upconverted Photosensitive Efficiency Enhancement for Highly Efficient NIR Tumor Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202885. [PMID: 36095253 PMCID: PMC9631065 DOI: 10.1002/advs.202202885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Indexed: 05/19/2023]
Abstract
Upconverted reactive oxygen species (ROS) photosensitization with one-photon excitation mode is a promising tactic to elongate the excitation wavelengths of photosensitive dyes to near-infrared (NIR) light region without the requirement of coherent high-intensity light sources. However, the photosensitization efficiencies are still finite by the unilateral improvement of excited-state intersystem crossing (ISC) via heavy-atom-effect, since the upconverted efficiency also plays a decisive role in upconverted photosensitization. Herein, a NIR light initiated one-photon upconversion heavy-atom-free small molecule system is reported. The meso-rotatable anthracene in pentamethine cyanine (Cy5) is demonstrated to enrich the populations in high vibrational-rotational energy levels and subsequently improve the hot-band absorption (HBA) efficiency. Moreover, the spin-orbit charge transfer intersystem crossing (SOCT-ISC) caused by electron donated anthracene can further amplify the triplet yield. Benefiting from the above two aspects, the 1 O2 generation significantly increases with over 2-fold improved performance compared with heavy-atom-modified method under upconverted light excitation, which obtains efficient in vivo phototheranostic results and provides new opportunities for other applications such as photocatalysis and fine chemical synthesis.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental MaterialsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Pengzhong Chen
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and EngineeringShenzhen UniversityShenzhen518057P. R. China
| |
Collapse
|
41
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
42
|
Heng H, Song G, Cai X, Sun J, Du K, Zhang X, Wang X, Feng F, Wang S. Intrinsic Mitochondrial Reactive Oxygen Species (ROS) Activate the In Situ Synthesis of Trimethine Cyanines in Cancer Cells. Angew Chem Int Ed Engl 2022; 61:e202203444. [DOI: 10.1002/anie.202203444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Heng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuetong Cai
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jian Sun
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xiaoran Zhang
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xia Wang
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
43
|
Janeková H, Russo M, Ziegler U, Štacko P. Photouncaging of Carboxylic Acids from Cyanine Dyes with Near-Infrared Light. Angew Chem Int Ed Engl 2022; 61:e202204391. [PMID: 35578980 PMCID: PMC9542589 DOI: 10.1002/anie.202204391] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared light (NIR; 650-900 nm) offers unparalleled advantages as a biocompatible stimulus. The development of photocages that operate in this region represents a fundamental challenge due to the low energy of the excitation light. Herein, we repurpose cyanine dyes into photocages that are available on a multigram scale in three steps and efficiently release carboxylic acids in aqueous media upon irradiation with NIR light up to 820 nm. The photouncaging process is examined using several techniques, providing evidence that it proceeds via photooxidative pathway. We demonstrate the practical utility in live HeLa cells by delivery and release of the carboxylic acid cargo, that was otherwise not uptaken by cells in its free form. In combination with modularity of the cyanine scaffold, the realization of these accessible photocages will fully unleash the potential of the emerging field of NIR-photoactivation and facilitate its widespread adoption outside the photochemistry community.
Collapse
Affiliation(s)
- Hana Janeková
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Marina Russo
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Urs Ziegler
- Center for Microscopy and Image AnalysisUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Peter Štacko
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
44
|
Fukushima H, Matikonda SS, Usama SM, Furusawa A, Kato T, Štacková L, Klán P, Kobayashi H, Schnermann MJ. Cyanine Phototruncation Enables Spatiotemporal Cell Labeling. J Am Chem Soc 2022; 144:11075-11080. [PMID: 35696546 PMCID: PMC10523398 DOI: 10.1021/jacs.2c02962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoconvertible tracking strategies assess the dynamic migration of cell populations. Here we develop phototruncation-assisted cell tracking (PACT) and apply it to evaluate the migration of immune cells into tumor-draining lymphatics. This method is enabled by a recently discovered cyanine photoconversion reaction that leads to the two-carbon truncation and consequent blue-shift of these commonly used probes. By examining substituent effects on the heptamethine cyanine chromophore, we find that introduction of a single methoxy group increases the yield of the phototruncation reaction in neutral buffer by almost 8-fold. When converted to a membrane-bound cell-tracking variant, this probe can be applied in a series of in vitro and in vivo experiments. These include quantitative, time-dependent measurements of the migration of immune cells from tumors to tumor-draining lymph nodes. Unlike previously reported cellular photoconversion approaches, this method does not require genetic engineering and uses near-infrared (NIR) wavelengths. Overall, PACT provides a straightforward approach to label cell populations with spatiotemporal control.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lenka Štacková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
45
|
Heng H, Song G, Cai X, Sun J, Du K, Zhang X, Wang X, Feng F, Wang S. Intrinsic‐Mitochondrial‐ROS‐Activated In Situ Synthesis of Trimethine Cyanines in Cancer Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao Heng
- Nanjing University School of Chemistry and Chemical Engineering 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Gang Song
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids Zhongguancun North First Street 100190 Beijing CHINA
| | - Xuetong Cai
- Nanjing University School of Chemistry and Chemical Engineering 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Jian Sun
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids Zhongguancun North First Street 100190 Beijing CHINA
| | - Ke Du
- Nanjing University School of Chemistry and Chemical Engineering 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Xiaoran Zhang
- Nanjing University School of Chemistry and Chemical Engineering 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Xia Wang
- Nanjing University School of Chemistry and Chemical Engineering 163 Xianlin Avenue 210023 Nanjing CHINA
| | - Fude Feng
- Nanjing University School of Chemistry and Chemical Engineering No. 163 Xianlin Avenue, Qixia District 210023 Nanjing CHINA
| | - Shu Wang
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids Zhongguancun North First Street 100190 Beijing CHINA
| |
Collapse
|
46
|
Li Y, Ma T, Jiang H, Li W, Tian D, Zhu J, Li Z. Anionic Cyanine J‐Type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria‐Targeting Tumor Phototherapy. Angew Chem Int Ed Engl 2022; 61:e202203093. [DOI: 10.1002/anie.202203093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yibin Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fibers and Eco - dyeing & Finishing Department of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430073 China
| | - Di Tian
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Biomass Fibers and Eco - dyeing & Finishing Department of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430073 China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhong'an Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
47
|
Janeková H, Russo M, Ziegler U, Štacko P. Photouncaging of Carboxylic Acids from Cyanine Dyes with Near‐Infrared Light**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hana Janeková
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Marina Russo
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Peter Štacko
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
48
|
Durán-Hernández J, Muñoz-Rugeles L, Guzmán-Méndez Ó, M Reza M, Cadena-Caicedo A, García-Montalvo V, Peón J. Sensitization of Nd 3+ Luminescence by Simultaneous Two-Photon Excitation through a Coordinating Polymethinic Antenna. J Phys Chem A 2022; 126:2498-2510. [PMID: 35436116 DOI: 10.1021/acs.jpca.2c01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have designed and synthesized two new cyaninic Nd3+ complexes where the lanthanide emission can be induced from simultaneous two-photon absorption followed by energy migration. These complexes correspond to a molecular design that uses an antenna ligand formed by the functionalization of a heptamethine dye with 5-ol-phenanthroline or 4-phenyl-terpyridine derivatives. These complexes employ the important nonlinear optical properties of symmetric polymethines to sensitize the lanthanide ion. We verified that simultaneous biphotonic excitation indirectly induces the 4F3/2 → 4I11/2 Nd3+ emission using femtosecond laser pulses tuned below the first electronic transition of the antenna. The simultaneous two-photon excitation events initially form the nonlinear-active second excited singlet of the polymethine antenna, which rapidly evolves into its first excited singlet. This state in turn induces the formation of the emissive Nd3+ states through energy transfer. The role of the first excited singlet of the antenna as the donor state in this process was verified through time resolution of the antenna's fluorescence. These measurements also provided the rates for antenna-lanthanide energy transfer, which indicate that the phenanthroline-type ligand is approximately five times more efficient for energy transfer than the phenyl-terpyridine derivative due to their relative donor-acceptor distances. The simultaneous two-photon excitation of this polymethine antenna allows for high spatial localization of the Nd3+excitation events.
Collapse
Affiliation(s)
- Jesús Durán-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Leonardo Muñoz-Rugeles
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Óscar Guzmán-Méndez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Mariana M Reza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Andrea Cadena-Caicedo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | | | - Jorge Peón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
49
|
Soavi G, Pedrini A, Devi Das A, Terenziani F, Pinalli R, Hickey N, Medagli B, Geremia S, Dalcanale E. Encapsulation of Trimethine Cyanine in Cucurbit[8]uril: Solution versus Solid‐State Inclusion Behavior. Chemistry 2022; 28:e202200185. [PMID: 35201658 PMCID: PMC9313864 DOI: 10.1002/chem.202200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Inclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host‐guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host‐guest complex with an association constant of 1.5×106 M−1. At concentrations suitable for NMR experiments, the slow formation of a supramolecular polymer was observed, followed by precipitation. Single crystals X‐ray structure elucidation confirmed the formation of a polymer with 1 : 1 stoichiometry in the solid state.
Collapse
Affiliation(s)
- Giuseppe Soavi
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anjali Devi Das
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesca Terenziani
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Roberta Pinalli
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Neal Hickey
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Barbara Medagli
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Enrico Dalcanale
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
50
|
Li Y, Ma T, Jiang H, Li W, Tian D, Zhu J, Li Z. Anionic Cyanine J‐type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria‐targeting Tumor Phototherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yibin Li
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Teng Ma
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Hao Jiang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Wei Li
- Wuhan Textile University Department of Chemistry and Chemical Engineering CHINA
| | - Di Tian
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Jintao Zhu
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhong'an Li
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry and Chemical Engineering 1037 Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|