1
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
2
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Polasky DA, Nesvizhskii AI. Recent advances in computational algorithms and software for large-scale glycoproteomics. Curr Opin Chem Biol 2023; 72:102238. [PMID: 36525809 DOI: 10.1016/j.cbpa.2022.102238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Glycoproteomics, or characterizing glycosylation events at a proteome scale, has seen rapid advances in methods for analyzing glycopeptides by tandem mass spectrometry in recent years. These advances have enabled acquisition of far more comprehensive and large-scale datasets, precipitating an urgent need for improved informatics methods to analyze the resulting data. A new generation of glycoproteomics search methods has recently emerged, using glycan fragmentation to split the identification of a glycopeptide into peptide and glycan components and solve each component separately. In this review, we discuss these new methods and their implications for large-scale glycoproteomics, as well as several outstanding challenges in glycoproteomics data analysis, including validation of glycan assignments and quantitation. Finally, we provide an outlook on the future of glycoproteomics from an informatics perspective, noting the key challenges to achieving widespread and reproducible glycopeptide annotation and quantitation.
Collapse
Affiliation(s)
- Daniel A Polasky
- University of Michigan Department of Pathology, Ann Arbor, MI, USA.
| | - Alexey I Nesvizhskii
- University of Michigan Department of Pathology, Ann Arbor, MI, USA; University of Michigan Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Sun Z, Fu B, Wang G, Zhang L, Xu R, Zhang Y, Lu H. High-throughput site-specific N-glycoproteomics reveals glyco-signatures for liver disease diagnosis. Natl Sci Rev 2023; 10:nwac059. [PMID: 36879659 PMCID: PMC9985154 DOI: 10.1093/nsr/nwac059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The glycoproteome has emerged as a prominent target for screening biomarkers, as altered glycosylation is a hallmark of cancer cells. In this work, we incorporated tandem mass tag labeling into quantitative glycoproteomics by developing a chemical labeling-assisted complementary dissociation method for the multiplexed analysis of intact N-glycopeptides. Benefiting from the complementary nature of two different mass spectrometry dissociation methods for identification and multiplex labeling for quantification of intact N-glycopeptides, we conducted the most comprehensive site-specific and subclass-specific N-glycosylation profiling of human serum immunoglobulin G (IgG) to date. By analysing the serum of 90 human patients with varying severities of liver diseases, as well as healthy controls, we identified that the combination of IgG1-H3N5F1 and IgG4-H4N3 can be used for distinguishing between different stages of liver diseases. Finally, we used targeted parallel reaction monitoring to successfully validate the expression changes of glycosylation in liver diseases in a different sample cohort that included 45 serum samples.
Collapse
Affiliation(s)
- Zhenyu Sun
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Guoli Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ruofan Xu
- Eleanor Roosevelt College, University of California San Diego, La Jolla, CA92093, USA
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Li M, Zhong X, Feng Y, Li L. Novel Isobaric Tagging Reagent Enabled Multiplex Quantitative Glycoproteomics via Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1874-1882. [PMID: 36095095 PMCID: PMC10160164 DOI: 10.1021/jasms.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein glycosylation, covalent attachment of carbohydrates to polypeptide chains, is a highly important post-translational modification involved in many essential physiological processes. Comprehensive site-specific and quantitative analysis is crucial for revealing the diverse functions and dynamics of glycosylation. To characterize intact glycopeptides, mass spectrometry (MS)-based glycoproteomics employs versatile fragmentation methods, among which electron-transfer/higher-energy collision dissociation (EThcD) has gained great popularity. However, the inherent limitation of EThcD in fragmenting low-charge ions has prevented its widespread applications. Furthermore, there is a need to develop a high-throughput strategy for comparative glycoproteomics with a large cohort of samples. Herein, we developed isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) tags to increase the charge states of glycopeptides, thereby improving the fragmentation efficiency and allowing for in-depth intact glycopeptide analysis, especially for sialoglycopeptides. Moreover, the unique reporter ions of DiLeuEN-labeled glycopeptides generated in tandem MS spectra enable relative quantification of up to four samples in a single analysis, which represents a new high-throughput method for quantitative glycoproteomics.
Collapse
|
7
|
Liang Y, Fu B, Zhang Y, Lu H. Progress of proteomics-driven precision medicine: From a glycosylation view. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9288. [PMID: 35261114 DOI: 10.1002/rcm.9288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Currently, cancer is one of the leading causes of death worldwide, partially owing to the lack of early diagnosis methods and effective therapies. With the rapid development of various omics, the precision medicine strategy becomes a promising way to increase the survival rates by considering individual differences. Glycosylation is one of the most essential protein post-translational modifications and plays important roles in a variety of biological processes. Therefore, it is highly possible to acquire understanding of the molecular mechanisms as well as discover novel potential markers for diagnosis and prognosis based on glycoproteomics research. This review summarizes the recent glycoproteomics studies about N-glycosylation of several cancer types, mainly in the past 5 years. We also highlight corresponding mass spectrometry-based analytical methods to give a brief overview on the main techniques applied in glycoproteomics.
Collapse
Affiliation(s)
- Yuying Liang
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| | - Bin Fu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| | - Ying Zhang
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med 2022; 86:101097. [PMID: 35400524 PMCID: PMC9378605 DOI: 10.1016/j.mam.2022.101097] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Protein post-translational modifications (PTMs) profoundly influence protein functions and play crucial roles in essentially all cell biological processes. The diverse realm of PTMs and their crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. The pathological roles of various PTMs are implicated in all aspects of cancer hallmark functions, cancer metabolism and regulation of tumor microenvironment. Study of PTMs has become an important area in cancer research to understand cancer biology and discover novel biomarkers and therapeutic targets. With a limited scope, this review attempts to discuss some PTMs of high frequency with recognized importance in cancer biology, including phosphorylation, acetylation, glycosylation, palmitoylation and ubiquitination, as well as their implications in clinical applications. These protein modifications are among the most abundant PTMs and profoundly implicated in carcinogenesis.
Collapse
|
9
|
Fang P, Ji Y, Oellerich T, Urlaub H, Pan KT. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity. Int J Mol Sci 2022; 23:ijms23031609. [PMID: 35163546 PMCID: PMC8835892 DOI: 10.3390/ijms23031609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Protein glycosylation governs key physiological and pathological processes in human cells. Aberrant glycosylation is thus closely associated with disease progression. Mass spectrometry (MS)-based glycoproteomics has emerged as an indispensable tool for investigating glycosylation changes in biological samples with high sensitivity. Following rapid improvements in methodologies for reliable intact glycopeptide identification, site-specific quantification of glycopeptide macro- and micro-heterogeneity at the proteome scale has become an urgent need for exploring glycosylation regulations. Here, we summarize recent advances in N- and O-linked glycoproteomic quantification strategies and discuss their limitations. We further describe a strategy to propagate MS data for multilayered glycopeptide quantification, enabling a more comprehensive examination of global and site-specific glycosylation changes. Altogether, we show how quantitative glycoproteomics methods explore glycosylation regulation in human diseases and promote the discovery of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pan Fang
- Department of Biochemistry and Molecular Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: (H.U.); (K.-T.P.)
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- Correspondence: (H.U.); (K.-T.P.)
| |
Collapse
|
10
|
Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides. ANALYTICA 2021. [DOI: 10.3390/analytica2040014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics.
Collapse
|
11
|
Nmagu D, Singh SK, Lee KH. Creation of monoclonal antibody expressing CHO cell lines grown with sodium butyrate and characterization of resulting antibody glycosylation. Methods Enzymol 2021; 660:267-295. [PMID: 34742393 DOI: 10.1016/bs.mie.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cells are the primary mammalian cell lines utilized to produce monoclonal antibodies (mAbs). The upsurge in biosimilar development and the proven health benefits of mAb treatments reinforces the need for innovative methods to generate robust CHO clones and enhance production, while maintaining desired product quality attributes. Among various product titer-enhancing approaches, the use of histone deacetylase inhibitors (HDACis) such as sodium butyrate (NaBu) has yielded promising results. The titer-enhancing effect of HDACi treatment has generally been observed in lower producer cell lines but those studies are typically done on individual clones. Here, we describe a cell line development (CLD) platform approach for creating clones with varying productivities. We then describe a method for selecting an optimal NaBu concentration to evaluate potential titer-enhancing capabilities in a fed-batch study. Finally, a method for purifying the mAb using protein A chromatography, followed by glycosylation analysis using mass spectrometry, is described. The proposed workflow can be applied for a robust CLD process optimization to generate robust clones, enhance product expression, and improve product quality attributes.
Collapse
Affiliation(s)
- Douglas Nmagu
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sumit K Singh
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
12
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|