1
|
Zolotareva M, Cascalheira F, Caneiras C, Bárbara C, Caetano DM, Teixeira MC. In the flow of molecular miniaturized fungal diagnosis. Trends Biotechnol 2024; 42:1628-1643. [PMID: 38987118 DOI: 10.1016/j.tibtech.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The diagnosis of fungal infections presents several challenges and limitations, stemming from the similarities in symptomatology, diversity of underlying pathogenic species, complexity of fungal biology, and scarcity of rapid, affordable, and point-of-care approaches. In this review, we assess technological advances enabling the conversion of cutting-edge laboratory molecular diagnostic methods to cost-effective microfluidic devices. The most promising strategies toward the design of DNA sequence-based fungal diagnostic systems, capable of capturing and deciphering the highly informative DNA of the pathogen and adapted for resource-limited settings, are discussed, bridging fungal biology, molecular genetics, microfluidics, and biosensors.
Collapse
Affiliation(s)
- Maria Zolotareva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias, INESC-, MN, 1000-029 Lisboa, Portugal; iBB - Institute for Bioengineering and Biosciences, Associate Laboratory Institute for Health and Bioeconomy - i4HB, 1049-001 Lisboa, Portugal
| | - Francisco Cascalheira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias, INESC-, MN, 1000-029 Lisboa, Portugal; iBB - Institute for Bioengineering and Biosciences, Associate Laboratory Institute for Health and Bioeconomy - i4HB, 1049-001 Lisboa, Portugal
| | - Cátia Caneiras
- Environmental Health Institute (ISAMB), Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; Institute of Preventive Medicine and Public Health, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Cristina Bárbara
- Environmental Health Institute (ISAMB), Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Centro Hospitalar Universitário Lisboa Norte, 1600-190, Lisboa, Portugal
| | - Diogo Miguel Caetano
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias, INESC-, MN, 1000-029 Lisboa, Portugal; Department of Electrical and Computer Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| | - Miguel Cacho Teixeira
- iBB - Institute for Bioengineering and Biosciences, Associate Laboratory Institute for Health and Bioeconomy - i4HB, 1049-001 Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Katzmeier F, Simmel FC. Reversible Self-Assembly of Nucleic Acids in a Diffusiophoretic Trap. Angew Chem Int Ed Engl 2024; 63:e202317118. [PMID: 38349772 DOI: 10.1002/anie.202317118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
The formation and dissociation of duplexes or higher order structures from nucleic acid strands is a fundamental process with widespread applications in biochemistry and nanotechnology. Here, we introduce a simple experimental system-a diffusiophoretic trap-for the non-equilibrium self-assembly of nucleic acid structures that uses an electrolyte gradient as the driving force. DNA strands can be concentrated up to hundredfold by a diffusiophoretic trapping force that is caused by the electric field generated by the electrolyte gradient. We present a simple equation for the field to guide selection of appropriate trapping electrolytes. Experiments with carboxylated silica particles demonstrate that the diffusiophoretic force is long-ranged, extending over hundreds of micrometers. As an application, we explore the reversible self-assembly of branched DNA nanostructures in the trap into a macroscopic gel. The structures assemble in the presence of an electrolyte gradient, and disassemble upon its removal, representing a prototypical adaptive response to a macroscopic non-equilibrium state.
Collapse
Affiliation(s)
- Florian Katzmeier
- Technical University of Munich, Physics of Synthetic Biological Systems, Arcisstraße 21, 80333, München, Germany
| | - Friedrich C Simmel
- Technical University of Munich, Physics of Synthetic Biological Systems, Arcisstraße 21, 80333, München, Germany
| |
Collapse
|
3
|
Shim S. Diffusiophoresis, Diffusioosmosis, and Microfluidics: Surface-Flow-Driven Phenomena in the Presence of Flow. Chem Rev 2022; 122:6986-7009. [PMID: 35285634 DOI: 10.1021/acs.chemrev.1c00571] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diffusiophoresis is the spontaneous motion of particles under a concentration gradient of solutes. Since the first recognition by Derjaguin and colleagues in 1947 in the form of capillary osmosis, the phenomenon has been broadly investigated theoretically and experimentally. Early studies were mostly theoretical and were largely interested in surface coating applications, which considered the directional transport of coating particles. In the past decade, advances in microfluidics enabled controlled demonstrations of diffusiophoresis of micro- and nanoparticles. The electrokinetic nature and the typical scales of interest of the phenomenon motivated various experimental studies using simple microfluidic configurations. In this review, I will discuss studies that report diffusiophoresis in microfluidic systems, with the focus on the fundamental aspects of the reported results. In particular, parameters and influences of diffusiophoresis and diffusioosmosis in microfluidic systems and their combinations are highlighted.
Collapse
Affiliation(s)
- Suin Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|