1
|
Sakamoto K, Hirokawa T. Lipid bilayer membrane permeability mechanism of the K-Ras(G12D)-inhibitory bicyclic peptide KS-58 elucidated by molecular dynamics simulations. Bioorg Med Chem Lett 2024; 100:129649. [PMID: 38341162 DOI: 10.1016/j.bmcl.2024.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Peptides are mid-size molecules (700-2000 g/mol) and have attracted particular interest as therapeutic modalities as they are superior in controlling protein-protein interactions, a process that is a typical drug target category, compared with small molecules (<500 g/mol). In 2020, we identified KS-58 (1333 g/mol) as a K-Ras(G12D)-inhibitory bicyclic peptide and suggested its cell membrane permeability. However, the membrane permeability mechanism had not been elucidated. In this study, we aim to clarify the mechanism by molecular dynamics (MD) simulations. Initially, we simulated the molecular conformations of KS-58 in water (a polar solvent) and in chloroform (a non-polar solvent). The identified stable conformations were significantly different in each solvent. KS-58 behaves as a chameleon-like molecule as it alters its polar surface area (PSA) depending on the solvent environment. It was also discovered that orientation of Asp's side chain is a critical energy barrier for KS-58 altering its conformation from hydrophilic to lipophilic. Taking these properties into consideration, we simulated its lipid bilayer membrane permeability. KS-58 shifted toward the inside of the lipid bilayer membrane with altering its conformations to lipophilic. When the simulation condition was set in deionized form of that carboxy group of Asp, KS-58 traveled deeper inside the cell membrane. PSA and the depth of the membrane penetration correlated. In vitro data suggested that cell membrane permeability of KS-58 is improved in weakly acidic conditions leading to partial deionization of the carboxy group. Our data provide an example of the molecular properties of mid-size peptides with membrane accessibility and propose an effective metadynamics approach to elucidate such molecular mechanisms by MD simulations.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Depertment, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan.
| | - Takatsugu Hirokawa
- Research & Development Depertment, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan; Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Japan; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Japan.
| |
Collapse
|
2
|
Tolou-Ghamari Z. Tacrolimus and Cyclosporin Pharmacotherapy, Detection Methods, Cytochrome P450 Enzymes after Heart Transplantation. Cardiovasc Hematol Agents Med Chem 2024; 22:106-113. [PMID: 37496131 DOI: 10.2174/1871525721666230726150021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Advances in organ transplantation were made after the discovery of the pure form of cyclosporine by Dr Jean Borel in the 1970s. In fact, in clinical practice achieving a delicate balance in circulating immunosuppressive necessitate focus on the difficult task of posttransplant therapeutic drug monitoring. OBJECTIVE The purpose of this study was to determine the pharmacologic properties of cyclosporine- tacrolimus, detection methods, and the effects on the activity of cytochrome P450 enzymes when prescribing the most efficient treatments in forms of polypharmacy for the recipients of heart transplantation. METHODS Scientific literature on the interactions of tacrolimus and cyclosporine with human cytochrome P450 enzymes was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus. RESULTS Prescription immunosuppressive drugs based on polypharmacy accompanied by induction agents could result in hidden neurotoxicity and nephrotoxicity. A literature search shows that cyclosporine prescription with antihypertensives drugs needs close monitoring. Co-administration of tacrolimus and diltiazem or verapamil needs a decrease in the tacrolimus dose by 20-50%. Vigilant attention to the lowest possible statin dose is needed when coadministered with fluvastatin or pravastatin. Polypharmacy based on ticlopidine, clopidogrel, and cyclosporine or tacrolimus needs monitoring of immunosuppressive drug levels for several months. A prescription with clotrimazole or fluconazole needs close monitoring, and itraconazole or ketoconazole needs to reduce the initial dose by 50%. Combination with nefazodone needs to be avoided, and alternative drugs such as sertraline or citalopram could be prescribed in addition to further monitoring consideration. In prescription with phenytoin, the bound and free phenytoin levels need close monitoring. CONCLUSION Polypharmacy based on tacrolimus or cyclosporine needs vigilant therapeutic drug monitoring due to the cytochrome P450 enzymes associated with biochemical variables in metabolic pathways. Further attention to polypharmacy should be given to circulate drugs that could hide pharmacokinetics interactions associated with infections, malignancies, chronic kidney disease, and rejection after organ transplantation.
Collapse
Affiliation(s)
- Zahra Tolou-Ghamari
- Deputy of Research and Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
4
|
Lv J, Wang XY, Zhou XY, Li DW, Qian RC. Specially Resolved Single Living Cell Perfusion and Targeted Fluorescence Labeling Based on Nanopipettes. Anal Chem 2022; 94:13860-13868. [PMID: 36162134 DOI: 10.1021/acs.analchem.2c02537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted delivery and labeling of single living cells in heterogeneous cell populations are of great importance to understand the molecular biology and physiological functions of individual cells. However, it remains challenging to perfuse fluorescence markers into single living cells with high spatial and temporal resolution without interfering neighboring cells. Here, we report a single cell perfusion and fluorescence labeling strategy based on nanoscale glass nanopipettes. With the nanoscale tip hole of 100 nm, the use of nanopipettes allows special perfusion and high-resolution fluorescence labeling of different subcellular regions in single cells of interest. The dynamic of various fluorescent probes has been studied to exemplify the feasibility of nanopipette-dependent targeted delivery. According to experimental results, the cytoplasm labeling of Sulfo-Cyanine5 and fluorescein isothiocyanate is mainly based on the Brownian movement due to the dyes themselves and does not have a targeting ability, while the nucleus labeling of 4',6-diamidino-2-phenylindole (DAPI) is originated from the adsorption between DAPI and DNA in the nucleus. From the finite element simulation, the precise manipulation of intracellular delivery is realized by controlling the electro-osmotic flow inside the nanopipettes, and the different delivery modes between nontargeting dyes and nucleus-targeting dyes were compared, showcasing the valuable ability of nanopipette-based method for the analysis of specially defined subcellular regions and the potential applications for single cell surgery, subcellular manipulation, and gene delivery.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-Yue Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
7
|
Analysis of the intracellular localization of amiodarone using live single-cell mass spectrometry. J Pharm Biomed Anal 2021; 205:114318. [PMID: 34418674 DOI: 10.1016/j.jpba.2021.114318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023]
Abstract
Amiodarone is a well-known antiarrhythmic drug with side effects including phospholipidosis. However, it is not clear how amiodarone and its metabolites are localized in the cell. In the present study, the localization of amiodarone in the cytosol, vacuoles, and lipid droplets of a single HepG2 human hepatocellular carcinoma cell was determined directly using live single-cell mass spectrometry. The cytosol, vacuoles, and lipid droplets of a single HepG2 cell treated with amiodarone were separately captured using a nano-spray tip under a fluorescence microscope after visualizing the lipid droplets using a fluorescent probe. This assay showed a linearity in the measurement of amiodarone levels with R2 values of 0.9996 and 0.9998 in the cell lysates and serum, respectively. The peak intensities of amiodarone and its metabolites in lipid droplets and vacuoles were significantly higher than those in the cytosol, while those in lipid droplets were higher than those in vacuoles. Amiodarone metabolites were detected in both lipid droplets and the cytosol. Live single-cell mass spectrometry combined with fluorescence imaging demonstrated clear localization of amiodarone and its metabolites in lipid droplets separately from the vacuole. This assay system combined with fluorescence imaging could be useful for investigating the intracellular localization of various drugs and their metabolites.
Collapse
|