1
|
Sahoo P, Pathak NK, Scott Bohle D, Dodd EL, Tripathy U. Hematin anhydride (β-hematin): An analogue to malaria pigment hemozoin possesses nonlinearity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123902. [PMID: 38281463 DOI: 10.1016/j.saa.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Hematin anhydride (β-hematin), the synthetic analogue of the malaria pigment, "hemozoin", is a heme dimer produced by reciprocal covalent bonds among carboxylic acid groups on the protoporphyrin-IX ring and the iron atom present in the two adjacent heme molecules. Hemozoin is a disposal product formed from the digestion of hemoglobin present in the red blood cells infected with hematophagous malaria parasites. Besides, as the parasites invade red blood cells, hemozoin crystals are eventually released into the bloodstream, where they accumulate over time in tissues. Severe malaria infection leads to significant dysfunction in vital organs such as the liver, spleen, and brain in part due to the autoimmune response to the excessive accumulation of hemozoin in these tissues. Also, the amount of these crystals in the vasculature correlates with disease progression. Thus, hemozoin is a unique indicator of infection used as a malaria biomarker and hence, used as a target for the development of antimalarial drugs. Hence, exploring various properties of hemozoin is extremely useful in the direction of diagnosis and cure. The present study focuses on finding one of the unknown properties of β-hematin in physiological conditions by using the Z-scan technique, which is simple, sensitive, and economical. It is observed that hemozoin possesses one of the unique material properties, i.e., nonlinearity with a detection limit of ∼ 15 µM. The self-defocusing action causes β-hematin to exhibit negative refractive nonlinearity. The observed data is analyzed with a thermal lensing model. We strongly believe that our simple and reliable approach to probing the nonlinearity of β-hematin will provide fresh opportunities for malaria diagnostics & cure in the near future.
Collapse
Affiliation(s)
- Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montreal H3A 0B8, Quebec, Canada
| | - Erin L Dodd
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance Montréal, H2X 2J6 Québec, Canada
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
2
|
El Saftawy E, Farag MF, Gebreil HH, Abdelfatah M, Aboulhoda BE, Alghamdi M, Albadawi EA, Abd Elkhalek MA. Malaria: biochemical, physiological, diagnostic, and therapeutic updates. PeerJ 2024; 12:e17084. [PMID: 38529311 PMCID: PMC10962339 DOI: 10.7717/peerj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed F. Farag
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Hossam H. Gebreil
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed Abdelfatah
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Michałowska A, Kudelski A. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123786. [PMID: 38128327 DOI: 10.1016/j.saa.2023.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Due to its great practical importance, the detection and determination of many biomolecules in body fluids and other samples is carried out in a large number of laboratories around the world. One of the most promising analytical techniques now being widely introduced into medical analysis is surface-enhanced Raman scattering (SERS) spectroscopy. SERS is one of the most sensitive analytical methods, and in some cases, a good quality SERS spectrum dominated by the contribution of even a single molecule can be obtained. Highly sensitive SERS measurements can only be carried out on substrates generating a very high SERS enhancement factor and a low Raman spectral background, and so using of right nanomaterials is a key element in the success of SERS biochemical analysis. In this review article, we present progress that has been made in the preparation of nanomaterials used in SERS spectroscopy for detecting various kinds of biomolecules. We describe four groups of nanomaterials used in such measurements: nanoparticles of plasmonic metals and deposits of plasmonic nanoparticles on macroscopic substrates, nanocomposites containing plasmonic and non-plasmonic parts, nanostructured macroscopic plasmonic metals, and nanostructured macroscopic non-plasmonic materials covered by plasmonic films. We also describe selected SERS biochemical analyses that utilize the nanomaterials presented. We hope that this review will be useful for researchers starting work in this fascinating field of science and technology.
Collapse
Affiliation(s)
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Cai J, Wu Y, Bai H, He Y, Qin Y. SERS and machine learning based effective feature extraction for detection and identification of amphetamine analogs. Heliyon 2023; 9:e23109. [PMID: 38144349 PMCID: PMC10746470 DOI: 10.1016/j.heliyon.2023.e23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is extensively researched in diverse disciplines due to its sensitivity and non-destructive nature. It is particularly considered a potential and promising technology for rapid on-site screening in drug detection. In this investigation, a technique was developed for fabricating nanocrystals of Ag@Au SNCs. Ag@Au SNCs, as the basic material of SERS, can detect amphetamine at concentrations as low as 1 μg/mL. The Ag@Au SNCs exhibits a strong surface plasmon resonance effect, which amplifies molecular signals. The SERS spectra of ten substances, including amphetamine and its analogs, showed a strong peak signal. To establish a qualitative distinction, we examined the Raman spectra and conducted density functional theory (DFT) calculations on the ten aforementioned species. The DFT calculation enabled us to determine the vibrational frequency and assign normal modes, thereby facilitating the qualitative differentiation of amphetamines and its analogs. Furthermore, the SERS spectrum of the ten mentioned substances was analysed using the support vector machine learning algorithm, which yielded a discrimination accuracy of 98.0 %.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yulun Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Haohao Bai
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yingsheng He
- Key Laboratory of Drug Control and Monitoring, National Anti-Drug Laboratory Zhejiang Regional Center, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| |
Collapse
|
5
|
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. BIOSENSORS 2022; 12:941. [PMID: 36354450 PMCID: PMC9687977 DOI: 10.3390/bios12110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique with distinguished features of non-destructivity, ultra-sensitivity, rapidity, and fingerprint characteristics for analysis and sensors. The SERS signals are mainly dependent on the engineering of high-quality substrates. Recently, solid SERS substrates with diverse forms have been attracting increasing attention due to their promising features, including dense hot spot, high stability, controllable morphology, and convenient portability. Here, we comprehensively review the recent advances made in the field of solid SERS substrates, including their common fabrication methods, basic categories, main features, and representative applications, respectively. Firstly, the main categories of solid SERS substrates, mainly including membrane substrate, self-assembled substrate, chip substrate, magnetic solid substrate, and other solid substrate, are introduced in detail, as well as corresponding construction strategies and main features. Secondly, the typical applications of solid SERS substrates in bio-analysis, food safety analysis, environment analysis, and other analyses are briefly reviewed. Finally, the challenges and perspectives of solid SERS substrates, including analytical performance improvement and largescale production level enhancement, are proposed.
Collapse
|
6
|
Sun H, Li X, Gu C, Zhang J, Wei G, Jiang T, Zhou X. Bioinspired surface-enhanced Raman scattering substrate with intrinsic Raman signal for the interactive SERS detection of pesticides residues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120800. [PMID: 34974296 DOI: 10.1016/j.saa.2021.120800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Although biomimetic surface enhanced Raman scattering (SERS) substrate which makes use of naturally existing raw materials have been fully utilized, it remains challenging to achieve credible quantitative detection. Herein, nanoimprint technology was exploited to engineer internal standard (IS) enabled quantitative flexible biomimetic SERS substrates, in which polydimethylsiloxane (PDMS) with intrinsic Raman signal was utilized as a tool to reversely duplicate surface structures from different agriculture products and then deposited with Ag nanoparticles. The resultant four kinds of biomimetic SERS substrates with different surface geometries all permit highly sensitive assay with enhancement factors (EFs) of about 106 in both drop-dry and in situ SERS detection modes. Moreover, the quantitative degree in the SERS detection was effectively corrected based on the IS strategy. Finally, an ingenious interactive in situ SERS detection was conducted. Interestingly, the maximum recovery rate was achieved when the template food was used as target surface compared with other foods, indicating the significance of manufacturing the highly conformed SERS-active structure from the surface to be tested. The proposed quantitative biomimetic SERS substrate is expected to be widely used in the field of biochemical supervision.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR. China
| | - Xiuting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR. China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR. China
| | - Jinjie Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, PR China
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shanxi University of Science and Technology, Weiyang University Park, Xian, Shanxi 710021, PR China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR. China.
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR. China.
| |
Collapse
|
7
|
Baptista V, Peng WK, Minas G, Veiga MI, Catarino SO. Review of Microdevices for Hemozoin-Based Malaria Detection. BIOSENSORS 2022; 12:bios12020110. [PMID: 35200370 PMCID: PMC8870200 DOI: 10.3390/bios12020110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/21/2023]
Abstract
Despite being preventable and treatable, malaria still puts almost half of the world's population at risk. Thus, prompt, accurate and sensitive malaria diagnosis is crucial for disease control and elimination. Optical microscopy and immuno-rapid tests are the standard malaria diagnostic methods in the field. However, these are time-consuming and fail to detect low-level parasitemia. Biosensors and lab-on-a-chip devices, as reported to different applications, usually offer high sensitivity, specificity, and ease of use at the point of care. Thus, these can be explored as an alternative for malaria diagnosis. Alongside malaria infection inside the human red blood cells, parasites consume host hemoglobin generating the hemozoin crystal as a by-product. Hemozoin is produced in all parasite species either in symptomatic and asymptomatic individuals. Furthermore, hemozoin crystals are produced as the parasites invade the red blood cells and their content relates to disease progression. Hemozoin is, therefore, a unique indicator of infection, being used as a malaria biomarker. Herein, the so-far developed biosensors and lab-on-a-chip devices aiming for malaria detection by targeting hemozoin as a biomarker are reviewed and discussed to fulfil all the medical demands for malaria management towards elimination.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Correspondence:
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Building A1, University Innovation Park, Dongguan 523808, China;
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| |
Collapse
|
8
|
Kenry, Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics 2022; 6:31-49. [PMID: 34976579 PMCID: PMC8671959 DOI: 10.7150/ntno.62970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the application of surface enhanced Raman scattering (SERS) nanoparticles for preclinical cancer imaging has attracted increasing attention. Raman imaging with SERS nanoparticles offers unparalleled sensitivity, providing a platform for molecular targeting, and granting multiplexed and multimodal imaging capabilities. Recent progress has been facilitated not only by the optimization of the SERS contrast agents themselves, but also by the developments in Raman imaging approaches and instrumentation. In this article, we review the principles of Raman scattering and SERS, present advances in Raman instrumentation specific to cancer imaging, and discuss the biological means of ensuring selective in vivo uptake of SERS contrast agents for targeted, multiplexed, and multimodal imaging applications. We offer our perspective on areas that must be addressed in order to facilitate the clinical translation of SERS contrast agents for in vivo imaging in oncology.
Collapse
Affiliation(s)
- Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Park JM, Choi HE, Kudaibergen D, Kim JH, Kim KS. Recent Advances in Hollow Gold Nanostructures for Biomedical Applications. Front Chem 2021; 9:699284. [PMID: 34169061 PMCID: PMC8217768 DOI: 10.3389/fchem.2021.699284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The localized surface plasmon resonance of metallic nanoparticles has attracted much attention owing to its unique characteristics, including the enhancement of signals in sensors and photothermal effects. In particular, hollow gold nanostructures are highly promising for practical applications, with significant advantages being found in their material properties and structures: 1) the interaction between the outer surface plasmon mode and inner cavity mode leads to a greater resonance, allowing it to absorb near-infrared light, which can readily penetrate tissue; 2) it has anti-corrosiveness and good biocompatibility, which makes it suitable for biomedical applications; 3) it shows a reduced net density and large surface area, allowing the possibility of nanocarriers for drug delivery. In this review, we present information on the classification, characteristics, and synthetic methods of hollow gold nanostructures; discuss the recent advances in hollow gold nanostructures in biomedical applications, including biosensing, bioimaging, photothermal therapy, and drug delivery; and report on the existing challenges and prospects for hollow gold nanostructures.
Collapse
Affiliation(s)
- Jeong-Min Park
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, Busan, South Korea
| | - Dauletkerey Kudaibergen
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|