1
|
Fang J, Dai L, Ren X, Wu D, Cao W, Wei Q, Ma H. Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks. J Colloid Interface Sci 2025; 683:973-980. [PMID: 39756192 DOI: 10.1016/j.jcis.2024.12.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (C3N4) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in C3N4 oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase. Phenyl-modified CNO was synthesized through one-step pyrolysis at a reduced temperature. The rotatable benzene ring and triazine group formed a dynamic structure, which exhibited strong aggregation in water-doped solvents. compared to unmodified graphitic C3N4, CNO demonstrated higher intrinsic ECL efficiency and more readily accessible ECL signals. AIE inducing polymerization was conducted via nanoprecipitation, and the resulting CNO micro-flowers were employed as a sensing platform. A CNO-based sensor was prepared by combining CNO micro-flowers with copper-based bimetallic phenolic network nanoparticles as a quencher. Sensitive signal quenching was achieved owing to the electron transfer of Cu2+ and antioxidation properties of polyphenolic structures. The prepared sandwich-type immunosensor for neuron-specific enolase showed a limit of detection of 0.12 pg/mL in the detection range of 0.001-100 ng/mL. This study presents an effective strategy for the ECL signal amplification of C3N4, which is conducive to fundamental research in ECL and the application of the proposed sensor in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
2
|
Song Y, Tian L, Li R, Guo Y, Han P, Ma G, Jiang H, Wang W, Lu J. Electrochemiluminescence platform for curcumin detection based on g-C 3N 4 of N-rich vacancy and Ti 2AlC. Food Chem 2025; 481:144084. [PMID: 40179509 DOI: 10.1016/j.foodchem.2025.144084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
In this work, g-C3N4 of N-rich vacancy (CNNV) and mesoporous SiO2 were synthesized. A novel electrochemiluminescence (ECL) sensor for curcumin (Cur) based on CNNV@SiO2 and Ti2AlC was constructed. An initial ECL signal was generated from the CNNV-S2O82- system. SiO2 significantly adsorbed more S2O82-, thereby enhancing the ECL signal. Ti2AlC served as an effective co-reaction promoter, further amplifying the ECL signal of CNNV@SiO2-S2O82- system. With the addition of Cur, the ECL signal also decreased, which can be attributed to the resonance energy transfer (RET) mechanism between CNNV (donor) and Cur (acceptor). Under optimal conditions, a strong linear relationship was observed between the change in ECL signal (ΔI) and the logarithm of Cur concentration (lgCCur), spanning from 5 × 10-15 to 5 × 10-9 mol L-1 with a detection limit of 1.7 × 10-15 mol L-1. The constructed ECL sensor was successfully applied to detect Cur in real samples.
Collapse
Affiliation(s)
- Yujia Song
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China.
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Pengfei Han
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Guangping Ma
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Hanyue Jiang
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Wenzhuo Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, PR China.
| |
Collapse
|
3
|
Chen X, Su J, Xiang D, Yuan Z, Lu C. Rapid Size Determination of Quasispherical Gold Nanoparticles by Electrocatalysis Efficiency-Regulated Electrochemiluminescence. Anal Chem 2024; 96:17689-17697. [PMID: 39440875 DOI: 10.1021/acs.analchem.4c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The size of gold nanoparticles (AuNPs) largely decides their properties and applications, making the rapid screening of AuNP size important. Despite the fact that AuNP-amplified electrochemiluminescence (ECL) is widely used in various ECL sensing applications, the mechanism of ECL enhancement remains elusive, especially the quantitative relationship between the enhanced ECL intensity and the size of AuNPs. In this work, taking quasispherical and citrate-stabilized AuNPs as model nanoparticles, we have reported that the ECL intensity of the S2O82--O2 system enhanced significantly with the increasing AuNP size. AuNPs acted as bielectrocatalysts for reducing the S2O82- and O2. The further study of enhancement mechanism demonstrates that AuNPs with increasing size facilitate the electron transfer and promote the generation of radicals required for the ECL emission, which produces more emitters-singlet oxygen. Meanwhile, the high surface density of citrate on small AuNPs suppresses the ECL signal by forming an electrostatic barrier. On the basis of the above phenomena, an ECL-based rapid AuNP size screening approach has been established. The accuracy of this platform is verified by the consistent results in comparison to transmission electron microscopy (TEM) measurements. This work not only provides deep insight into the correlation between the AuNP size and the ECL enhancement but also contributes an alternative to the TEM technique for the rapid AuNP size screening. Additionally, this study also extends the exploration of ECL-based structure analysis techniques toward nanomaterials through clarifying the structure-electrocatalytic activity correlation.
Collapse
Affiliation(s)
- Xueqian Chen
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiyuan Su
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Dengke Xiang
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Xie R, Li K, Tian R, Lu C. Spotting d-band centers of single-atom catalysts by oxygen intermediate-boosted electrochemiluminescence. Chem Sci 2024:d4sc03763d. [PMID: 39416292 PMCID: PMC11474484 DOI: 10.1039/d4sc03763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Catalytic activities of single-atom catalysts are strongly dependent on their d-band centers. However, it is a long-standing challenge to provide a cost-effective and accurate evaluation for the positions of d-band centers of these catalysts due to the fact that the widely applicable photoelectron spectroscopy methodologies require complicated sampling and spectral unfolding processes. In this contribution, we have proposed oxygen intermediate-boosted electrochemiluminescence (ECL) for rapid spotting of the d-band centers of single-atom catalysts, involving single atomic Au, Ag, Cu and Fe. It was disclosed that the d-band centers of single-atom catalysts closer to the Fermi level could facilitate the interaction between catalysts and oxygen intermediates, leading to higher luminol ECL intensities as a result of the promoted adsorption and reduction ability towards oxygen intermediates. Moreover, this correlation was also adapted for other metal catalysts such as Au and Ag nanoparticles. This correspondence could be utilized for an accurate identification of d-band centers of single-atom catalysts. It is anticipated that the proposed strategy could be beneficial for a deep understanding of microstructure studies of single-atom catalysts to achieve advanced catalytic performances.
Collapse
Affiliation(s)
- Ruyu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 China
| |
Collapse
|
5
|
Wang B, You X, Li Z, Jie G, Jie G. Dual-mode electrochemiluminescence sensing and phone imaging assays based on bipolar electrode for kanamycin detection. Anal Chim Acta 2024; 1320:343015. [PMID: 39142786 DOI: 10.1016/j.aca.2024.343015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Excessive use of antibiotics will enter the water environment and soil through the biological chain, and then transfer to the human body through food, resulting in drug resistance, kidney toxicity and other health problems, so it is urgent to develop highly sensitive detection methods of antibiotics. Here, we designed a dual-mode sensor platform based on closed bipolar electrode (cBPE) electroluminescence (ECL) and mobile phone imaging to detect kanamycin in seawater. The prepared CN-NV-550 displayed extremely intense ECL signal, allowing for convenient mobile phone imaging. The cBPE was combined with DNA cycle amplification technology to prevent the mutual interference between target and the luminescent material, and realized the amplification of signal. In the presence of target Kana, Co3O4 was introduced to the cBPE anode by DNA cycle amplification product, and accelerated the oxidation rate of uric acid (UA). Thus, the electroluminescence response of CN-NV-550 on cBPE cathode was much improved due to the charge balance of the cBPE, achieving both ECL detection and mobile phone imaging assay of Kana, which much improved the accuracy and efficiency of assay. The limit of detection (LOD) in this work is 0.23 pM, and LOD for mobile phone imaging is 0.39 pM. This study integrate ECL imaging visualization of CN-NV-550 and high electrocatalytic activity of Co3O4 into cBPE-ECL detection, providing a new perspective for antibiotic analysis, and has great potential for practical applications, especially in Marine environmental pollution monitoring.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xubin You
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guitao Jie
- Haemal Internal Medicine, Linyi Central Hospital, Yishui County, Linyi, Shandong, 276400, PR China.
| |
Collapse
|
6
|
Li H, Qiao S, Zhang H, Qiao Y, Liu J, Li Y. Highly sensitive and selective demethylase FTO detection using a DNAzyme-mediated CRISPR/Cas12a signal cascade amplification electrochemiluminescence biosensor with C-CN/PCN V heterojunction as emitter. Biosens Bioelectron 2024; 256:116276. [PMID: 38599073 DOI: 10.1016/j.bios.2024.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Shuai Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Heng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Jin Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, PR China.
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
7
|
Li F, Peng H, Shen N, Yang C, Zhang L, Li B, He J. Electrochemiluminescence in Graphitic Carbon Nitride Decorated with Silver Nanoparticles for Dopamine Determination Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27767-27777. [PMID: 38752680 DOI: 10.1021/acsami.4c03996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Electrochemiluminescence (ECL) luminophores with wavelength-tunable multicolor emissions are essential for multicolor ECL imaging detection and multiplexed analysis. In this work, silver nanoparticle (Ag NP)-decorated graphitic carbon nitride (g-CN@Ag) nanocomposites were synthesized. The morphology, chemical composition, structure, and ECL property of g-CN@Ag were investigated. The prepared g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 can produce blue, blue-green, chartreuse, and yellow colored ECL emissions, respectively, by using K2S2O8 as the coreagent. The ECL emission wavelength of g-CN@Ag can be regulated from 460 to 565 nm by modulating the content of the immobilized Ag NPs. Then, a multicolor ECL detection array was fabricated by using g-CN, g-CN@Ag1, g-CN@Ag5, and g-CN@Ag10 as four ECL luminophores. Dopamine was detected based on its inhibition effect on the multicolor ECL emissions. The linear range is from 0.1 nM to 1 mM with the lowest detection limit of 44 pM. Then, machine learning-assisted multiparameter concentration prediction of dopamine was further carried out by combining the deep neural network (DNN) algorithm. This work provides a new avenue to regulate the ECL emission wavelength of g-CN by using the metal nanoparticle modification strategy and presents an effective machine learning-assisted multicolor ECL detection strategy for accurate multiparameter quantitative detection.
Collapse
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Hao Peng
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Nuotong Shen
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Chen Yang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Limin Zhang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Bing Li
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Jianbo He
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| |
Collapse
|
8
|
Fang Y, Yang H, Hou Y, Li W, Shen Y, Liu S, Zhang Y. Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides. Nat Commun 2024; 15:3597. [PMID: 38678039 PMCID: PMC11519465 DOI: 10.1038/s41467-024-48011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.
Collapse
Affiliation(s)
- Yanfeng Fang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Hong Yang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuhua Hou
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China.
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Wang J, Han Z, Shang T, Feng Y, Liu R, Lu X. Artemisinin: a novel chiral electrochemiluminescence luminophore-assisted enantiospecific recognition and mechanism identification. Chem Sci 2024; 15:5581-5588. [PMID: 38638210 PMCID: PMC11023031 DOI: 10.1039/d4sc00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Exploring novel electrochemiluminescence (ECL) molecules with high efficiency and good stability in aqueous solutions is crucial for achieving highly sensitive detection of analytes. However, developing chiral luminophores with efficient ECL performance is still a challenge. Herein, we first uncover that artemisinin (ART), a well-known chiral antimalarial drug, features a strong ECL emission at 726 nm with the assistance of a co-reactant potassium persulfate (K2S2O8), and an ECL efficiency of 195.3%, compared to that of standard Ru(bpy)3Cl2/K2S2O8. Mechanistic studies indicate that the strong ECL signal of ART is generated when the excited state formed by the reduction of ART peroxide bonds and combination with persulfate returns to the ground state. Significantly, we found that the ECL sensor based on chiral ART could efficiently identify and detect chiral cysteine (Cys) through ECL signals, with a lower limit of detection of 3.7 nM for l-Cys. Density functional theory calculations and scanning electrochemical microscopy technology further confirm that the disparity in the ECL signals is attributed to the different affinity between chiral ART and d/l-Cys, resulting in distinct electron transfer rates. The study demonstrates a new role of ART in ECL investigation and for the first time, achieves the development of ART for the enantioselective recognition and sensitive detection of chiral substances. This will be of vital significance for ECL and chirality research.
Collapse
Affiliation(s)
- Jiangyan Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Tianrui Shang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Yanjun Feng
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Ruirui Liu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
10
|
Jia Y, Fan X, Yu J, Lu F, Yuan Z, Lu C. Electron Transfer Efficiency-Regulated Electrochemiluminescence for Rapid Crystallinity Analysis in Layered Materials. Anal Chem 2024; 96:5598-5607. [PMID: 38533531 DOI: 10.1021/acs.analchem.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The electrochemiluminescence (ECL) signal is largely determined by the electron transfer efficiency. Therefore, in the nanomaterial-involved ECL system, the structure-related electron distribution could affect the electron transfer efficiency and further alter the ECL intensity. These features make the design of versatile ECL-based analytical techniques for probing the correlated structure possible. And it is generally accepted that the increased crystallinity of nanomaterials usually leads to a uniform electron distribution, which provides higher conductivity. Therefore, the crystallinity-improved conductivity could facilitate electron transfer, promote the electrochemical activity of support materials, and boost the efficiency of the ECL reaction. In this study, we have demonstrated that the ECL signal of the graphitic carbon nitride reporter was proportional to the crystallinity of layered double hydroxides (LDHs), which meets the supposition well. On the basis of this phenomenon, an ECL-based crystallinity analysis approach has been established using CdAl-LDHs as the model materials. The universality of this proposed technique was further validated by the rapid and accurate crystallinity determination of ZnAl-LDH samples with diverse crystallinities. This work not only contributes an alternative to the X-ray diffraction technique for the rapid screening of crystallinity in layered materials but also opens a new avenue for the design of ECL-based structure analysis techniques toward nanomaterials and even organic materials by involving electron transfer regulation correlation.
Collapse
Affiliation(s)
- Yunxiu Jia
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Fan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingxin Yu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Yang Q, Yang Z, Lu F, Ge H, Du Y, Cao D, Yuan Z, Lu C. Probing the Alcoholysis Degree of Polyvinyl Alcohol by Synergistic Coordination-Regulated Fluorescence. Anal Chem 2024; 96:4657-4664. [PMID: 38456390 DOI: 10.1021/acs.analchem.3c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polyvinyl alcohol (PVA) with abundant hydroxyl groups (-OH) has been widely used for membranes, hydrogels, and films, and its function is largely affected by the alcoholysis degree. Therefore, the development of rapid and accurate methods for alcoholysis degree determination in PVAs is important. In this contribution, we have proposed a novel fluorescence-based platform for probing the alcoholysis degree of PVA by using the (E)-N-(4-methoxyphenyl)-1-(quinolin-2-yl)methanimine (QPM)-Zn2+ complex as the reporter. The mechanism study disclosed that the strong coordination between -OH and Zn2+ induced the capture of the QPM-Zn2+ complex and promoted its subsequent immobilization into the noncrystalline area. The immobilization of the QPM-Zn2+ complex restricted its molecular rotation and reduced the nonirradiative transition, thus yielding bright emissions. In addition, the practical applications of this proposed method were further validated by the accurate alcoholysis degree determination of blind PVA samples with the confirmation of the National Standard protocol. It is expected that the developed fluorescence approach in this work might become an admissive strategy for screening the alcoholysis degree of PVA.
Collapse
Affiliation(s)
- Qingxin Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiming Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hanbing Ge
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Du
- Analysis Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ding Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Guo W, Xia M, Peng D, Zhao Y, Nie Y, Zhou Y. Co-Reactive Ligand In Situ Engineered Gold Nanoclusters with Ultra-Bright Near-Infrared Electrochemiluminescence for Ultrasensitive and Label-Free Detection of Carboxylesterase Activity. Anal Chem 2024; 96:2369-2377. [PMID: 38310525 DOI: 10.1021/acs.analchem.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Ultrasensitive and accurate monitoring of carboxylesterase (CE) activity is extremely crucial for the early diagnosis of hepatocellular carcinoma (HCC), which is still a considerable challenge. Herein, using a co-reactive ligand engineering strategy, ultra-bright near-infrared (λmax = 830 nm) and self-enhanced electrochemiluminescence (ECL) Au nanoclusters (NCs) were in situ prepared with 2-(diethylamino) ethanethiol (DEAET) as a co-reactive ligand. Remarkably, the co-reactive ligand not only acts as a stabilizer like traditional ligands but also plays a crucial role as a co-reactant to ensure a confinement effect to shorten the charge transfer distance and increase the local concentration, significantly improving the collision efficiency between the electrogenerated free radicals. Consequently, the DEAET Au NCs exhibited a record and stable anodal ECL without the addition of an exogenous co-reactant, dramatically superior to classical Au NCs and Ru(bpy)32+ with a certain amount of the co-reactant. As a proof of concept, a convenient and label-free CE biosensor was innovatively constructed using 1-naphthyl acetate as a selective substrate, achieving ultrasensitive detection for CE activity with a low limit of detection of 9.1 × 10-7 U/L. Therefore, this work not only paves a co-reactive ligand engineering strategy for in situ preparation of high-efficiency metal NCs but also provides an ultrasensitive and convenient platform for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Wenzheng Guo
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Mingyang Xia
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Duan Peng
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yingyue Zhao
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yamin Nie
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- State Key Laboratory of Antiviral Drugs, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Li L, Wang T, Zhong Y, Li R, Deng W, Xiao X, Xu Y, Zhang J, Hu X, Wang Y. A review of nanomaterials for biosensing applications. J Mater Chem B 2024; 12:1168-1193. [PMID: 38193143 DOI: 10.1039/d3tb02648e] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Tianshu Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ruyi Li
- Rotex Co., Ltd, Chengdu, Sichuan, 610043, China
| | - Wei Deng
- Department of Orthopedics, Pidu District People's Hospital, the Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 611730, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
14
|
Mihret Y, Sisay G, Diro A, Hailemariam S, Kitte SA. Nitrogen Defect-Rich Graphitic Carbon Nitride for Highly Sensitive Voltammetric Determination of Tryptophan. ACS OMEGA 2023; 8:46869-46877. [PMID: 38107901 PMCID: PMC10719911 DOI: 10.1021/acsomega.3c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Here, a highly sensitive electrochemical sensor for detection of tryptophan (Trp) using a nitrogen defect graphitic carbon nitride-modified glassy carbon electrode (ND-CN/GCE) was introduced. ND-CN/GCE showed a higher oxidation current for Trp than the graphitic carbon nitride-modified glassy carbon electrode (g-CN/GCE) and bare glassy carbon electrode (BGCE). The synthesized nitrogen defect-rich graphitic carbon nitride (ND-CN) was characterized using X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical impedance spectroscopy and cyclic voltammetry were used to further analyze the electrochemical properties of BGCE, g-CN/GCE, and ND-CN/GCE. The oxidation of Trp at ND-CN/GCE is a diffusion-controlled process at pH 3.0. It was calculated that the transfer coefficient, rate constant, and diffusion coefficient of Trp were 0.53, 2.24 × 103 M-1 s-1, and 8.3 × 10-3 cm2 s-1, respectively, at ND-CN/GCE. Trp was detected using square wave voltammetry, which had a linear range from 0.01 to 40 μM at pH 3.0 and a limit of detection of about 0.0034 μM (3σ/m). Analyzing the presence of Trp in a milk and multivitamin tablet sample with a percentage recovery in the range of 97.0-108% satisfactorily demonstrated the practical usability of the electrochemical sensor. The ND-CN/GCE additionally displays good repeatability and reproducibility and satisfactory selectivity.
Collapse
Affiliation(s)
- Yeabsira Mihret
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Getu Sisay
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Abebe Diro
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Solomon Hailemariam
- Department
of Physics, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Shimeles Addisu Kitte
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| |
Collapse
|
15
|
Zhou Y, Zhou Y, Gou J, Bai Q, Xiao X, Liu H. Europium-Functionalized Graphitic Carbon Nitride for Efficient Chemiluminescence Detection of Singlet Oxygen. ACS Sens 2023; 8:3349-3359. [PMID: 37596990 DOI: 10.1021/acssensors.3c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Enhancing the sensitivity and selectivity of chemiluminescence (CL) sensors for detecting chemical species in complex samples poses a significant challenge in nanoparticle surface engineering. Graphitic carbon nitride (CN) shows promise but suffers from weak CL intensity and unknown luminescence mechanisms. In this study, we propose a nitrogen defect strategy to enhance the CL efficiency of europium-functionalized graphitic carbon nitride (Eu-CNNPs). By controlling the dosage of the europium modification, we can adjust the nitrogen defect content to reduce the energy gap and improve the CL performance. Remarkably, Eu-CNNPs with rich nitrogen defects exhibit strong chemiluminescence emission specifically for singlet oxygen (1O2) without responding to other reactive oxygen species (ROS). Building upon this finding, we developed a direct, selective, and sensitive CL sensing platform for 1O2 in PM2.5 and monitored 1O2 production in photosensitizers without interference from metal ions. Through extensive experiments, we attribute the 1O2-driven CL response to the presence of abundant nitrogen defects in the CN material, accelerating electron transfer and yielding a high generation of 1O2. Furthermore, chemiluminescence resonance energy transfer (CRET) between (1O2)2* (1O2 dimeric aggregate) and Eu-CNNPs contributes to strong CL emission. This work provides insights into enhancing the CL performance of CN and offers new possibilities for advancing the practical analysis of nanomaterials using the intriguing mechanism of nitrogen defects.
Collapse
Affiliation(s)
- Yuxian Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yu Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jing Gou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Qinghong Bai
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Houjing Liu
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Chen X, Liu Y, Wang B, Liu X, Lu C. Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Fang Y, Zhou Z, Hou Y, Wang C, Cao X, Liu S, Shen Y, Zhang Y. Highly Efficient Wavelength-Resolved Electrochemiluminescence of Carbon Nitride Films for Ultrasensitive Multiplex MicroRNA Detection. Anal Chem 2023; 95:6620-6628. [PMID: 37040595 DOI: 10.1021/acs.analchem.2c05740] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The development of electrochemiluminescence (ECL) emitters of different colors with high ECL efficiency (ΦECL) is appealing yet challenging for ultrasensitive multiplexed bioassays. Herein, we report the synthesis of highly efficient polymeric carbon nitride (CN) films with fine-tuned ECL emission from blue to green (410, 450, 470, and 525 nm) using the precursor crystallization method. More importantly, naked eye-observable and significantly enhanced ECL emission was achieved, and the cathodic ΦECL values were ca. 112, 394, 353, and 251 times those of the aqueous Ru(bpy)3Cl2/K2S2O8 reference. Mechanism studies showed that the density of surface-trapped electrons, the associated nonradiative decay pathways, and electron-hole recombination kinetics were crucial factors for the high ΦECL of CN. Based on high ΦECL and different colors of ECL emission, the wavelength-resolved multiplexing ECL biosensor was constructed to simultaneously detect miRNA-21 and miRNA-141 with superior low detection limits of 0.13 fM and 25.17 aM, respectively. This work provides a facile method to synthesize wavelength-resolved ECL emitters based on metal-free CN polymers with high ΦECL for multiplexed bioassays.
Collapse
Affiliation(s)
- Yanfeng Fang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuhua Hou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Xuwen Cao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
18
|
Zhao B, Liang J, Zou X, Zhang B, Zhang Y, Niu L. Crystallization Regulation Engineering in the Carbon Nitride Nanoflower for Strong and Stable Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16723-16731. [PMID: 36971542 DOI: 10.1021/acsami.2c22803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cathode electrochemiluminescence (ECL) of C3N4 material has suffered from weak and unstable ECL emission for a long time, which greatly limits its practical application. Herein, a novel approach was developed to improve the ECL performance by regulating the crystallinity of the C3N4 nanoflower for the first time. The high-crystalline C3N4 nanoflower achieved a pretty strong ECL signal as well as excellent long-term stability compared to low-crystalline C3N4 when K2S2O8 was used as a co-reactant. Through the investigation, it is found that the enhanced ECL signal is attributed to the simultaneous inhibition of K2S2O8 catalytic reduction and enhancement of C3N4 reduction in the high-crystalline C3N4 nanoflower, which can provide more opportunities for SO4• - to react with electro-reduced C3N4• -, and a new "activity passivation ECL mechanism" was proposed, while the improvement of the stability is mainly ascribed to the long-range ordered atomic arrangements caused by structure stability in the high-crystalline C3N4 nanoflower. As a benefit from the excellent ECL emission and stability of high-crystalline C3N4, the C3N4 nanoflower/K2S2O8 system was employed as a Cu2+ detection sensing platform, which exhibited high sensitivity, excellent stability, and good selectivity with a wide linear range from 6 nM to 10 μM and a low detection limit of 1.8 nM.
Collapse
Affiliation(s)
- Bolin Zhao
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jiahui Liang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xingzi Zou
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Baohua Zhang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuwei Zhang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Niu
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
19
|
Peng L, Li P, Chen J, Deng A, Li J. Recent progress in assembly strategies of nanomaterials-based ultrasensitive electrochemiluminescence biosensors for food safety and disease diagnosis. Talanta 2023; 253:123906. [PMID: 36122432 DOI: 10.1016/j.talanta.2022.123906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
The Electrochemiluminescence (ECL)-based biosensors have received considerable attention in food contaminants and disease diagnosis, due to their fascinating advantages such as low cost, fast analysis speed, wide linear range, high sensitivity, and excellent anti-interference ability. Meanwhile, with the vigorous development and improvement of nanotechnology, biosensor assembly strategies tend to diversify and be multifunctional. This review focuses on the representative ECL biosensors in food safety and disease diagnosis reported by our research group and other research groups based on nanomaterials assembly strategies in recent years. According to the different roles of nanomaterials played in the constitution of ECL biosensors, nanomaterials would be divided into the following two categories to be summarized: (1) Nanomaterials for signal amplification. (2) Nanomaterials as ECL emitters. Finally, this review prospects the perspectives on the future development direction of ECL biosensor in food safety and disease diagnosis.
Collapse
Affiliation(s)
- Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Pengcheng Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jia Chen
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
20
|
Fu X, Huang J, Lai X, Rong J, Qi G, Lin Z, Fu F, Dong Y. Strategy and Mechanism for Strong and Stable Electrochemiluminescence of Graphitic Carbon Nitride. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Lu Y, Han S, Xi Y, Yang S, Zhu T, Niu B, Li F. TiO 2 nanoparticles modified graphitic carbon nitride with potential-resolved multicolor electrochemiluminescence and application for sensitive sensing of rutin. Anal Bioanal Chem 2023; 415:221-233. [PMID: 36326858 DOI: 10.1007/s00216-022-04406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Recently, nanocomposites with potential-resolved multicolor electrochemiluminescence (ECL) property have attracted new research interests. Herein, TiO2 nanoparticles modified graphitic carbon nitride (TiO2-NPs/g-C3N4) with inherent potential-resolved multicolor ECL emission was prepared via a simple synthesis method. The morphology and chemical composition of the synthesized TiO2-NPs/g-C3N4 were characterized. The obtained TiO2-NPs/g-C3N4 exhibited dual-peak multicolor ECL emission under cyclic voltammetry scanning by using K2S2O8 as co-reagent. The first ECL peak (ECL-1) is composed of turquoise blue ECL emission (471 nm) located at -1.3 V and olive green ECL emission (490 nm) ranging from -1.4 to -2.0 V. The second ECL peak (ECL-2) is composed of navy blue ECL emission (458 nm) located at -3.0 V. The ECL mechanism for the potential-resolved multicolor ECL emission was proposed. Furthermore, the first ECL imaging sensing method was fabricated for the sensitive quantitative detection of rutin based on the effective quenching effect of rutin on the ECL of TiO2-NPs/g-C3N4. The linear response range is 0.005-400 µM with detection limit as low as 2 nM. This work presents a simple way to prepare g-C3N4-based nanocomposites with potential-resolved multicolor ECL, which broadens the potential applications of g-C3N4-based nanocomposites for ECL imaging sensing and light-emitting devices.
Collapse
Affiliation(s)
- Yuyang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Shu Han
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Shuhan Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Tao Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Binhan Niu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
22
|
Yang E, Yang H, Ning Z, Fang Y, Chen M, Zheng Y, Xu W, Wu G, Zhang Y, Shen Y. Construction of Carbon Dots with Wavelength-Tunable Electrochemiluminescence and Enhanced Efficiency. Anal Chem 2022; 94:16510-16518. [DOI: 10.1021/acs.analchem.2c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Erli Yang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Hong Yang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Yanfeng Fang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao266003, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing210009, China
| |
Collapse
|
23
|
Yin T, Ye Y, Dong W, Jie G. Electrochemiluminescence resonance energy transfer biosensing platform between g-C 3N 4 nanosheet and Ru-SiO 2@FA for dual-wavelength ratiometric detection of SARS-CoV-2 RdRp gene. Biosens Bioelectron 2022; 215:114580. [PMID: 35917609 PMCID: PMC9299981 DOI: 10.1016/j.bios.2022.114580] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 01/31/2023]
Abstract
Rational detection of syndrome coronavirus 2 (SARS-CoV-2) is crucial to prevention, control, and treatment of disease. Herein, a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on resonance energy transfer (RET) between g-C3N4 nanosheets and Ru-SiO2@folic acid (FA) nanomaterials was designed to realize ultrasensitive detection of SARS-CoV-2 virus (RdRp gene). Firstly, the unique g-C3N4 nanosheets displayed very intense and stable ECL at 460 nm, then the triple helix DNA was stably and vertically bound to g-C3N4 on electrode by high binding affinity between ssDNA and g-C3N4. Meanwhile, trace amounts of target genes were converted to a large number of output by three-dimensional (3D) DNA walker multiple amplification, and the output bridged a multifunctional probe Ru-SiO2@FA to electrode. Ru-SiO2@FA not only showed high ECL at 620 nm, but also effectively quenched g-C3N4 ECL. As a result, ECL decreased at 460 nm and increased at 620 nm, which was used to design a rational ECL biosensor for detection of SARS gene. The results show that the biosensor has excellent detection sensitivity for RdRp gene with a dynamic detection range of 1 fM to 10 nM and a limit of detection (LOD) of 0.18 fM. The dual-wavelength ratio ECL biosensor has inestimable value and application prospects in the fields of biosensing and clinical diagnosis.
Collapse
|
24
|
Chen L, Guo H, Tian L, Zhou SF. Molecular engineered graphitic carbon nitride with strong and stable electrochemiluminescence for immunosensing. Microchem J 2022; 181:107846. [DOI: 10.1016/j.microc.2022.107846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Liu L, Zhu Y, Wang H, Zhang Y, Chai Y, Yuan R. Enhanced Electrochemiluminescence of Graphitic Carbon Nitride by Adjustment of Carbon Vacancy for Supersensitive Detection of MicroRNA. Anal Chem 2022; 94:12444-12451. [PMID: 36037298 DOI: 10.1021/acs.analchem.2c02462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a supersensitive biosensor was constructed by using graphitic carbon nitride with a carbon vacancy (VC-g-C3N4) as an efficient electrochemiluminescence (ECL) emitter for detection of microRNA-21 (miRNA-21). Impressively, VC-g-C3N4 could be prepared by formaldehyde (HCHO)-assisted urea ploycondensation, and the concentration of the carbon vacancy could be controlled by adjusting the dosage of HCHO to improve the ECL performance, in which the carbon vacancy could improve the charge carrier transfer to enhance the conductivity and it also could be used as an electron trap to prevent electrode passivation and facilitate the adsorption of coreactant S2O82- to accelerate its reduction. Compared with original g-C3N4, the introduction of carbon vacancies resulted in a significant enhancement of the ECL efficiency of VC-g-C3N4. With the aid of improved cascade strand displacement amplification (IC-SDA), the ECL biosensor realized sensitive detection of miRNA-21 with a low detection limit of 3.34 aM. This successful strategy promoted the development of g-C3N4 in the ECL field to construct the sensitive biosensor for molecular and disease diagnoses.
Collapse
Affiliation(s)
- Linlei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yidan Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
26
|
An electrochemiluminescence immunosensor based on Ag-Ti3C2 MXene and CNNVs with multiple signal amplification strategies. Bioelectrochemistry 2022; 146:108131. [DOI: 10.1016/j.bioelechem.2022.108131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022]
|
27
|
Liu J, Wang R, Zhou H, Mathesh M, Dubey M, Zhang W, Wang B, Yang W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. NANOSCALE 2022; 14:10286-10298. [PMID: 35791765 DOI: 10.1039/d2nr02031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of nucleic acid isothermal amplification strategies based on soft nanoarchitectonics offers a new dimension to the traditional electrochemical technique, particularly because of its flexibility, high efficiency, and increased sensitivity for analytical applications. Various DNA/RNA isothermal amplification strategies have been developed for the design and fabrication of new electrochemical biosensors for efficient and important biomolecular detection. Herein, we provide an overview of recent efforts in this research field and the strategies for signal-amplified sensing systems, with their biological applications, current challenges and prospects in this promising new area.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Ruke Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Motilal Mathesh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Mukul Dubey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Wengan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| |
Collapse
|
28
|
Gao N, Zeng H, Wang X, Zhang Y, Zhang S, Cui R, Zhang M, Mao L. Graphdiyne: A New Carbon Allotrope for Electrochemiluminescence. Angew Chem Int Ed Engl 2022; 61:e202204485. [PMID: 35488432 DOI: 10.1002/anie.202204485] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Graphdiyne (GDY), a well-known 2D carbon allotrope, demonstrates increasing fantastic performance in various fields owing to its outstanding electronic properties. Owing to its unique properties, electrochemiluminescence (ECL) technology is one powerful tool for understanding fundamental questions and for ultrasensitive sensing and imaging. Here, we firstly find that GDY without any functionalization or treatment shows a strong ECL emission with potassium persulfate (K2 S2 O8 ) as coreactant, which is totally different with other carbon allotropes. Mechanistic study indicates that the ECL emission of GDY is generated by the surface state transition. Interestingly, ECL is generated at 705 nm in the near infrared region with an ECL efficiency of 424 % compared to that of Ru(bpy)3 Cl2 /K2 S2 O8 . The study demonstrates a new character of GDY in ECL investigation and sets the stage for the development of GDY for emerging applications, including imaging and light-emitting devices.
Collapse
Affiliation(s)
- Nan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hui Zeng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaofang Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yue Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Shuai Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Ruwen Cui
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Meining Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
29
|
Li F, Xi Y, Jiang J, Peng H, Li B, He J, Shu J, Cui H. O-Fluorobenzoic Acid-Mediated Construction of Porous Graphitic Carbon Nitride with Nitrogen Defects for Multicolor Electrochemiluminescence Imaging Sensing. Anal Chem 2022; 94:9306-9315. [PMID: 35738019 DOI: 10.1021/acs.analchem.2c00702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphitic carbon nitride (g-CN) is an attractive electrochemiluminescence (ECL) luminophore. However, g-CN with wavelength-tunable ECL emission is still limited, which limits its application in multicolor ECL sensing and imaging analysis. In this study, porous g-CN (PCN) with nitrogen defects was synthesized through the condensation of melamine by using o-fluorobenzoic acid (o-FBA) as an effective regulation reagent. A series of PCNs, including PCN-5%, PCN-10%, and PCN-30%, were obtained by changing the mass ratio of o-FBA and melamine. The porous structure and tunable chemical composition change of the PCNs were carefully characterized. The nitrogen defects and porous structure of the synthesized PCNs can enlarge the specific surface area, facilitate electron transfer, and generate various surface states with gradually changed energy bands, leading to wavelength-tunable multicolor ECL emissions. Accordingly, g-CN, PCN-5%, PCN-10%, and PCN-30% can generate navy blue, turquoise blue, turquoise green, and olive green ECL emissions, respectively, with the peak ECL wavelength varied from 465 to 550 nm. Then, a multicolor ECL sensing array was proposed for the discrimination of polyphenols based on the prepared g-CN and PCNs by using a smartphone as a portable detector for the first time. Five polyphenol substances including vitamin P, resveratrol, phloretin, phlorizin, and caffeic acid were discriminated by using principal component analysis and hierarchical cluster analysis. The present work provides a simple strategy to adjust the ECL wavelength of g-CN and presents a simple way to fabricate multicolor ECL sensing array, which has great application potential for multiplexed analysis and multicolor ECL imaging sensing.
Collapse
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jianming Jiang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Hao Peng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Bing Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.,Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou 236500, China
| | - Jianbo He
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.,Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou 236500, China
| | - Jiangnan Shu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
30
|
Liu L, Liu Y, Zhang Y, Yuan R, Wang H. K-Doped Graphitic Carbon Nitride with Obvious Less Electrode Passivation for Highly Stable Electrochemiluminescence and Its Sensitive Sensing Analysis of MicroRNA. Anal Chem 2022; 94:7191-7199. [PMID: 35549240 DOI: 10.1021/acs.analchem.1c05440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, upon potassium (K) element doping, the electrochemiluminescence (ECL) excitation potential of graphitic carbon nitride (g-C3N4) obviously shifted from -1.57 to -0.74 V. Compared with other reported methods, this work was the first one that could reduce the ECL excitation potential of g-C3N4 to below the critical value of -0.9 V. It could more effectively overcome electrode passivation and significantly improve the ECL intensity and stability. Meanwhile, the lower excitation potential could significantly reduce other side reactions caused by high voltage, and the introduction of the K element could obviously increase the water solubility to shorten the preparation time. The apparent decrease of the excitation potential was due to the doping of the K element, which could reduce the band gap, increase the in-plane spacing, and expand π-conjugated systems. Furthermore, using K-doped g-C3N4 with highly stable electrochemiluminescence at lower potential as an emitter, a biosensor for microRNA-141 (miRNA-141) sensitive detection was constructed with the assistance of an innovative nicking enzyme-assisted strand displacement amplification (N-SDA). Compared to the traditional SDA, a nicking enzyme was introduced to obviously improve the utilization rate of the fuel chain and increase the number of cycles, finally resulting in higher signal amplification efficiency. Therefore, the constructed biosensor showed excellent performance in the ultrasensitive detection of miRNA-141 with the limit of detection (LOD) being 44.8 aM. This work gave a more effective means to obviously improve the ECL property of g-C3N4 caused by electrode passivation and provided a more efficient and convenient detection method for biochemical analysis.
Collapse
Affiliation(s)
- Linlei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yusen Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
31
|
Gao N, Zeng H, Wang X, Zhang Y, Zhang S, Cui R, Zhang M, Mao L. Graphdiyne: A new Carbon Allotrope for Electrochemiluminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nan Gao
- Renmin University of China Department of Chemistry CHINA
| | - Hui Zeng
- Renmin University of China Department of Chemistry CHINA
| | - Xiaofang Wang
- Renmin University of China Department of Chemistry CHINA
| | - Yue Zhang
- Renmin University of China Department of Chemistry CHINA
| | - Shuai Zhang
- Renmin University of China Department of Chemistry CHINA
| | - Ruwen Cui
- Renmin University of China Department of Chemistry CHINA
| | - Meining Zhang
- Renmin University of China Department of Chemistry zhongguancun street 59th 100872 Beijing CHINA
| | - Lanqun Mao
- Beijing Normal University Collenge of Chemistry CHINA
| |
Collapse
|
32
|
Chen L, Zhao P, Tian L, Wang Y, Zhou SF. Modulating the anodic electrochemiluminescence of graphitic carbon nitride by thiophene doping. NEW J CHEM 2022; 46:16114-16120. [DOI: 10.1039/d2nj02764j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Modulating the anodic electrochemiluminescence of graphitic carbon nitride by molecular engineering with electron donor thiophene.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Panpan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Libing Tian
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yini Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
33
|
Kitte SA, Bushira FA, Xu C, Wang Y, Li H, Jin Y. Plasmon-Enhanced Nitrogen Vacancy-Rich Carbon Nitride Electrochemiluminescence Aptasensor for Highly Sensitive Detection of miRNA. Anal Chem 2021; 94:1406-1414. [PMID: 34927425 DOI: 10.1021/acs.analchem.1c04726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of biosensors for biologically important substances with ultralow content such as microRNA is of great significance. Herein, a novel surface plasmon-enhanced electrogenerated chemiluminescence-based aptasensor was developed for ultrasensitive sensing of microRNA by using nitrogen vacancy-rich carbon nitride nanosheets as effective luminophores and gold nanoparticles as plasmonic sources. The introduction of nitrogen vacancies improved the electrochemiluminescence behavior due to improved conductance and electrogenerated chemiluminescence activity. The introduction of plasmonic gold nanoparticles increased the electrochemiluminescence signal intensity by more than eightfold. The developed surface plasmon-enhanced electrogenerated chemiluminescence aptasensor exhibited good selectivity, ultrasensitivity, excellent stability, and reproducibility for the determination of microRNA-133a, with a dynamic linear range of 1 aM to 100 pM and a limit of detection about 0.87 aM. Moreover, the surface plasmon-enhanced electrogenerated chemiluminescence sensor obtained a good recovery when detecting the content of microRNA in actual serum.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
34
|
Zou R, Xie R, Wang L, Lin Y, Lu C. Electrochemiluminescence detection of oxygen vacancies in layered double hydroxides. Chem Commun (Camb) 2021; 58:423-426. [PMID: 34897325 DOI: 10.1039/d1cc05990d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemiluminescence (ECL) platform was established to screen oxygen vacancies in layered double hydroxides (LDHs) by fabricating graphitic carbon nitride/LDH nanocomposites. The oxygen vacancy concentrations determined by the developed ECL platform were in good agreement with those obtained by XPS.
Collapse
Affiliation(s)
- Rui Zou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruyu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liren Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
35
|
Zhao B, Luo Y, Qu X, Hu Q, Zou J, He Y, Liu Z, Zhang Y, Bao Y, Wang W, Niu L. Graphite-like Carbon Nitride Nanotube for Electrochemiluminescence Featuring High Efficiency, High Stability, and Ultrasensitive Ion Detection Capability. J Phys Chem Lett 2021; 12:11191-11198. [PMID: 34761929 DOI: 10.1021/acs.jpclett.1c02824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, for the first time, we introduced a novel electrochemiluminescence (ECL) luminophore based on a one-dimensional g-C3N4 nanotube using K2S2O8 as the coreactant. The g-C3N4 nanotube/K2S2O8 couple displayed very satisfactory ECL performance, i.e., an ECL efficiency (ΦECL) of 437% (vs 100% for the Ru(bpy)32+/K2S2O8 reference) and excellent ECL stability (the relative standard deviation (RSD) = 0.78%). By contrast, ΦECL and RSD of the control g-C3N4 nanosheet/K2S2O8 couple were merely 196% and 45.34%, respectively. The mechanism study revealed that the g-C3N4 nanotube features a large surface area and much lower interfacial impedance in the porous microstructure, which are beneficial for accelerating the charge transfer rate and stabilizing charge/excitons for ECL. Moreover, using the g-C3N4 nanotube/K2S2O8 system as a sensing platform, excellent Cu2+ detection capability was also achieved. Our work thus triggers a promising g-C3N4 nanomaterial system toward ECL application.
Collapse
Affiliation(s)
- Bolin Zhao
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yelin Luo
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaodan Qu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, China
| | - Qiong Hu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinhui Zou
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ying He
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhenbang Liu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
36
|
Liu Z, Zhang Z, Li Y. Highly Sensitive and Selective Detection Toward Melamine in Dairy Product by Turn-On Fluorescence of Ultrathin Graphitic Carbon Nitride Nanosheet. LUMINESCENCE 2021; 36:1885-1890. [PMID: 34032371 DOI: 10.1002/bio.4094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 11/06/2022]
Abstract
It is meaningful and promising to develop a practical sensor toward melamine in dairy products with high sensitivity and selectivity. However, complicated composition and environment in milk necessitate stable luminophore as sensor with excellent photophysical properties. Herein, ultrathin graphitic carbon nitride nanosheet (CNNS) is prepared via successive thermal polymerization and acid exfoliation. The photophysical property of CNNS states its strong ultraviolet absorption and intense blue-light emission. Noteworthily, the CNNS could act as a chemo-sensor to detect trace melamine in dairy products. The high stability, eminent sensitivity, powerful selectivity and competitiveness substantiates that this CNNS luminophore is a promising sensor for melamine in dairy products, being of potentially practical value on monitoring milk quality.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Zijun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| |
Collapse
|
37
|
Bai X, Jia T, Wang X, Hou S, Hao D, Bingjie-Ni. High carrier separation efficiency for a defective g-C3N4 with polarization effect and defect engineering: mechanism, properties and prospects. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00595b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Different types of defects in g-C3N4 induce polarization effect to promote the separation of charge carriers and improve the photocatalytic efficiency.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Xuyu Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Shanshan Hou
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| | - Bingjie-Ni
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| |
Collapse
|