1
|
Wang H, Zhong L, Liu S, Deng H, Liang J, Wang W, Niu L, Gan S. Ion-selective-membrane-free high-pressure potentiometric ammonium ion sensing. Talanta 2025; 291:127859. [PMID: 40048996 DOI: 10.1016/j.talanta.2025.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
The state-of-the-art solid-contact ion-selective electrodes (SC-ISEs) for NH4+ primarily utilize organic carrier-based ion-selective membranes (ISM). However, they face challenges such as the water-layer effect at the SC/ISM interface and the weak mechanical strength of the ISM. In this work, we present an ISM-free, high-pressure potentiometric NH4+ sensor based on a bifunctional transducer, specifically a framework of copper hexacyanoferrate (CuHCF). CuHCF serves as both an ion-to-electron transducer and an NH4+ recognition element. The sensing mechanism involves electron transfer from the Fe redox center coupled with the ion transfer of NH4+ within its framework channels. To further develop an all-solid-state sensor, we integrated a solid-contact reference electrode of silver/silver tetraphenylborate electrode. This all-solid-state NH4+ sensor demonstrates Nernstian response sensitivity and comparable selectivity under 1 MPa pressure. Importantly, it avoids the generation of a water layer and exhibits long-term stability. This work highlights a concept for ISM-free high-pressure potentiometric NH4+ sensing.
Collapse
Affiliation(s)
- Haocheng Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lijie Zhong
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Siyi Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huali Deng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiale Liang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Shiyu Gan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Mo X, Tang Y, Zhong L, Wang H, Du S, Niu L, Gan S. Cu 1.4Mn 1.6O 4 as a bifunctional transducer for potentiometric Cu 2+ solid-contact ion-selective electrode. Talanta 2024; 274:125993. [PMID: 38579422 DOI: 10.1016/j.talanta.2024.125993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Current potentiometric Cu2+ sensors mostly rely on polymer-membrane-based solid-contact ion-selective electrodes (SC-ISEs) that constitute ion-selective membranes (ISM) and solid contact (SC) for respective ion recognition and ion-to-electron transduction. Herein, we report an ISM-free Cu2+-SC-ISE based on Cu-Mn oxide (Cu1.4Mn1.6O4) as a bifunctional SC layer. The starting point is simplifying complex multi-interfaces for Cu2+-SC-ISEs. Specifically, ion recognition and signal transduction have been achieved synchronously by an ion-coupled-electron transfer of crystal ion transport and electron transfer of Mn4+/3+ in Cu1.4Mn1.6O4. The proposed Cu1.4Mn1.6O4 electrode discloses comparable sensitivity, response time, high selectivity and stability compared with present ISM-based potentiometric Cu2+ sensors. In addition, the Cu1.4Mn1.6O4 electrode also exhibits near Nernstian responses toward Cu2+ in natural water background. This work emphasizes an ISM-free concept and presents a scheme for the development of potentiometric Cu2+ sensors.
Collapse
Affiliation(s)
- Xiaocheng Mo
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China
| | - Yitian Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China
| | - Lijie Zhong
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China.
| | - Haocheng Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China
| | - Sanyang Du
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Shiyu Gan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Liu ZH, Cai X, Dai HH, Zhao YH, Gao ZW, Yang YF, Liu YZ, Yang M, Li MQ, Li PH, Huang XJ. Highly Stable Solid Contact Calcium Ion-Selective Electrodes: Rapid Ion-Electron Transduction Triggered by Lipophilic Anions Participating in Redox Reactions of Cu nS Nanoflowers. Anal Chem 2024; 96:9069-9077. [PMID: 38749062 DOI: 10.1021/acs.analchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 μV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Wei Gao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Min-Qiang Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Li Y, Zhu X, Ding J, Qin W. Robust Potentiometric Microelectrodes for In Situ Sensing of Ion Fluxes with High Sensitivity. Anal Chem 2023; 95:18754-18759. [PMID: 37989258 DOI: 10.1021/acs.analchem.3c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Simple, reproducible, and reliable preparation of robust potentiometric microelectrodes is both challenging and of great importance for noninvasive real-time ion sensing. Herein, we report a simple strategy for the large-scale synthesis of nickel cobalt sulfide (NiCo2S4) nanowire arrays grown on carbon fibers for potentiometric microelectrodes. The highly uniform NiCo2S4 nanowire array serving as a transduction layer can provide a high capillary pressure and viscous resistance for loading the ion sensing membrane and exhibit a large redox capacitance for improving the stability. An all-solid-state lead-selective microelectrode, which presents a detection limit of 2.5 × 10-8 M in the simulated soil solution, was designed as a model for noninvasive, in situ, and real-time detection of ion fluxes near the rice root surface. Importantly, the microsensor enables sensitive detection of trace-level ion-fluxes. This work provides a simple yet general strategy for designing potentiometric microelectrodes.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Xu Zhu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
5
|
Li Y, Liao Z, Lin X, Ding J, Qin W. In Situ Continuous Measurement of Salinity in Estuarine and Coastal Sediments by All-Solid Potentiometric Sensors. ACS Sens 2023; 8:1568-1578. [PMID: 36926846 DOI: 10.1021/acssensors.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Salinity is crucial for understanding the environmental and ecological processes in estuarine and coastal sediments. In situ measurements in sediments are scarce due to the low water content and particulate adsorption. Here, a new potentiometric sensor principle is proposed for the real-time in situ measurement of salinity in sediments. The sensor system is based on paper sampling and two all-solid electrodes, a cation-selective electrode (copper hexacyanoferrate, CuHCF) and an anion-selective electrode (Ag/AgCl). The spontaneous aqueous electrolyte extraction and redox reaction can produce a Nernstian response on both electrodes that is directly related to salinity. This potentiometric sensor allows for salinity acquisition in a wide salinity range (1-50 ppt), with high resolution (<1 ppt), and at a low water content (<30%), and it has been applied for the in situ measurement of salinity and the interpretation of cycling processes of metals in estuarine and coastal sediments. Moreover, the sensor coupled to a wireless monitoring system exhibited remote-sensing capability and successfully captured the salinity dynamic processes of the overlying water and pore water during the tidal period. This sensor with its low cost, versatility, and applicability represents a valuable tool to advance the comprehension of salinity and the salinity-driven dissolved-matter variations in estuarine and coastal sediments.
Collapse
Affiliation(s)
- Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhibo Liao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China
| | - Xindong Lin
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100049, China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
7
|
Lyu Y, Han T, Zhong L, Tang Y, Xu L, Ma Y, Bao Y, Gan S, Bobacka J, Niu L. Coulometric ion sensing with Li+-selective LiMn2O4 electrodes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
8
|
Xu L, Gan S, Zhong L, Sun Z, Tang Y, Han T, Lin K, Liao C, He D, Ma Y, Wang W, Niu L. Conductive metal organic framework for ion-selective membrane-free solid-contact potentiometric Cu2+ sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Liao C, Zhong L, Tang Y, Sun Z, Lin K, Xu L, Lyu Y, He D, He Y, Ma Y, Bao Y, Gan S, Niu L. Solid-Contact Potentiometric Anion Sensing Based on Classic Silver/Silver Insoluble Salts Electrodes without Ion-Selective Membrane. MEMBRANES 2021; 11:959. [PMID: 34940460 PMCID: PMC8707216 DOI: 10.3390/membranes11120959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022]
Abstract
Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl- with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl-, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl- sensor was fabricated for on-body monitoring the concentration of sweat Cl- to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.
Collapse
Affiliation(s)
- Chunxian Liao
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Lijie Zhong
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Yitian Tang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhonghui Sun
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Kanglong Lin
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Longbin Xu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yan Lyu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Dequan He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Ying He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Yingming Ma
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Yu Bao
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Shiyu Gan
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.L.); (L.Z.); (Y.T.); (Z.S.); (K.L.); (L.X.); (Y.L.); (D.H.); (Y.H.); (Y.M.); (Y.B.); (L.N.)
| |
Collapse
|