1
|
Fouquet TNJ, Cody RB, Charles L. Degradation strategies for structural characterization of insoluble synthetic polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39093552 DOI: 10.1002/mas.21903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
With the advent of soft ionization techniques such as electrospray (ESI) and matrix-assisted laser desorption/ionization (MALDI) to produce intact gas-phase ions from nonvolatile macromolecules, mass spectrometry has become an essential technique in the field of polymeric materials. However, (co)polymers of very high molecular weight or with reticulated architectures still escape ESI or MALDI, mainly due to solubility issues. Strategies developed to tackle such an analytical challenge all rely on sample degradation to produce low-mass species amenable to existing ionization methods. Yet, chain degradation needs to be partial and controlled to generate sufficiently large species that still contain topological or architectural information. The present article reviews the different analytical degradation strategies implemented to perform mass spectrometry of these challenging synthetic polymers, covering thermal degradation approaches in sources developed in the 2000s, off-line sample pre-treatments for controlled chemical degradation of polymeric substrates, and most recent achievements employing reactive ionization modes to perform chemolysis on-line with MS.
Collapse
|
2
|
Wesdemiotis C, Williams-Pavlantos KN, Keating AR, McGee AS, Bochenek C. Mass spectrometry of polymers: A tutorial review. MASS SPECTROMETRY REVIEWS 2024; 43:427-476. [PMID: 37070280 DOI: 10.1002/mas.21844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.
Collapse
Affiliation(s)
| | | | - Addie R Keating
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Andrew S McGee
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
3
|
Youssef I, Carvin-Sergent I, Konishcheva E, Kebe S, Greff V, Karamessini D, Matloubi M, Ouahabi AA, Moesslein J, Amalian JA, Poyer S, Charles L, Lutz JF. Covalent Attachment and Detachment by Reactive DESI of Sequence-Coded Polymer Taggants. Macromol Rapid Commun 2022; 43:e2200412. [PMID: 35803899 DOI: 10.1002/marc.202200412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Indexed: 11/11/2022]
Abstract
The use of sequence-defined polymers is an interesting emerging solution for materials identification and traceability. Indeed, a very large amount of identification sequences can be created using a limited alphabet of coded monomers. However, in all reported studies, sequence-defined taggants are usually included in a host material by non-covalent adsorption or entrapment, which may lead to leakage, aggregation or degradation. To avoid these problems, sequence-defined polymers were covalently-attached in the present work to the mesh of model materials, namely acrylamide hydrogels. To do so, sequence-coded polyurethanes containing a disulfide linker and a terminal methacrylamide moiety were synthesized by stepwise solid-phase synthesis. These methacrylamide macromonomers were afterwards copolymerized with acrylamide and bisacrylamide in order to achieve crosslinked hydrogels containing covalently-bound polyurethane taggants. It is shown herein that these taggants can be selectively detached from the hydrogel mesh by reactive desorption electrospray ionization. Using dithiothreitol the disulfide linker that link the taggant to the gel can be selectively cleaved. Ultimately, the released taggants can be decoded by tandem mass spectrometry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Itab Youssef
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France
| | - Isaure Carvin-Sergent
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, Marseille Cedex 20, 13397, France
| | - Evgeniia Konishcheva
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France
| | - Seydina Kebe
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France
| | - Vincent Greff
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France
| | - Denise Karamessini
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France
| | - Maziar Matloubi
- Polysecure GmbH, Sankt-Georgener Str. 19, Freiburg, 79111, Germany
| | - Abdelaziz Al Ouahabi
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France.,Polysecure GmbH, Sankt-Georgener Str. 19, Freiburg, 79111, Germany
| | - Jochen Moesslein
- Polysecure GmbH, Sankt-Georgener Str. 19, Freiburg, 79111, Germany
| | - Jean-Arthur Amalian
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, Marseille Cedex 20, 13397, France
| | - Salomé Poyer
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, Marseille Cedex 20, 13397, France
| | - Laurence Charles
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, Marseille Cedex 20, 13397, France
| | - Jean-François Lutz
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, Strasbourg Cedex 2, 67034, France
| |
Collapse
|
4
|
Lin H, Yuan Y, Hang T, Wang P, Lu S, Wang H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J Pharm Biomed Anal 2022; 219:114888. [PMID: 35752027 DOI: 10.1016/j.jpba.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
In recent years, the development and optimization of biodegradable coronary stents have become the research focus of many medical device manufacturers and scientific research institutions since they can be completely degraded and absorbed, and they restore vascular function. However, there is a lack of in situ quantification of these stents spatially in tissue in vivo. In this study, matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT ICR) and time-of-flight (TOF) mass spectrometric imaging (MSI) were used to analyze the time-dependent distributions of a biodegradable vascular scaffold, which consisted of copolymers of lactic acid and glycolic acid (PLGA) and its degradation products in cross-sections and longitudinal sections of blood vessels. The MALDI-MSI methods for analyzing the distribution of PLGA and its derivatives in vivo were established by optimizing the conditions of sample pretreatment and mass spectrometry (MS). In order to semi-quantify the contents of PLGA degradation products in blood vessels, self-made stainless-steel and indium tin oxide (ITO) target plates were developed to compare and establish the standard curves for semi-quantitative analysis. The target plate can be placed on the target carrier of MS simultaneously with the conductive slide, which can simultaneously carry out vapor deposition or spray on the substrate, to ensure the parallelism of the pretreatment experiments between the standards and the actual vascular samples. The proposed method provided a powerful tool for evaluating the distributions and degradation process of biological stent materials in the coronary artery, as well as provided technical support for the research and development of degradable biological stents and product optimization.
Collapse
Affiliation(s)
- Houwei Lin
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Yinlian Yuan
- Department of Paediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Hang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Peng Wang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Shijiao Lu
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Rankin‐Turner S, Reynolds JC, Turner MA, Heaney LM. Applications of ambient ionization mass spectrometry in 2021: An annual review. ANALYTICAL SCIENCE ADVANCES 2022; 3:67-89. [PMID: 38715637 PMCID: PMC10989594 DOI: 10.1002/ansa.202100067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/26/2024]
Abstract
Ambient ionization mass spectrometry (AIMS) has revolutionized the field of analytical chemistry, enabling the rapid, direct analysis of samples in their native state. Since the inception of AIMS almost 20 years ago, the analytical community has driven the further development of this suite of techniques, motivated by the plentiful advantages offered in addition to traditional mass spectrometry. Workflows can be simplified through the elimination of sample preparation, analysis times can be significantly reduced and analysis remote from the traditional laboratory space has become a real possibility. As such, the interest in AIMS has rapidly spread through analytical communities worldwide, and AIMS techniques are increasingly being integrated with standard laboratory operations. This annual review covers applications of AIMS techniques throughout 2021, with a specific focus on AIMS applications in a number of key fields of research including disease diagnostics, forensics and security, food safety testing and environmental sciences. While some new techniques are introduced, the focus in AIMS research is increasingly shifting from the development of novel techniques toward efforts to improve existing AIMS techniques, particularly in terms of reproducibility, quantification and ease-of-use.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - James C. Reynolds
- Department of ChemistryLoughborough UniversityLoughboroughLeicestershireUK
| | - Matthew A. Turner
- Department of ChemistryLoughborough UniversityLoughboroughLeicestershireUK
| | - Liam M. Heaney
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|