1
|
Lazarus R, Kothari R, Venuganti VVK, Nag A. Intracellular Temperature Sensing with Remarkably High Relative Sensitivity Using Nile Red-Loaded Biocompatible Niosome. ACS APPLIED BIO MATERIALS 2025; 8:3028-3039. [PMID: 40130319 DOI: 10.1021/acsabm.4c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Accurate temperature sensing at the nanoscale within biological systems is crucial for understanding various cellular processes, such as gene expression, metabolism, and enzymatic reactions. Current temperature-sensing techniques either lack the temperature resolution and sensitivity necessary for intracellular applications or require invasive procedures that can disrupt cellular activities. In this study, we present Nile Red (NR)-loaded hybrid (span 60-L64) niosomes and Nile Red-loaded L64 niosomes as highly sensitive fluorescent nanothermometers. These niosomes are synthesized via the thin-layer evaporation method, forming thermoresponsive vesicles, and they demonstrate reversible phase transition behavior with temperature. When loaded with polarity-sensitive Nile Red, vesicles exhibit a strong temperature-dependent fluorescence response (change in intensity, emission maximum, and lifetime), suitable for noncontact temperature sensing in the biologically important temperature range of 25 to 50 °C. While NR-hybrid niosomes exhibit a high relative sensitivity of 19% °C-1 at 42 °C, NR-L64 niosomes achieved extraordinary relative sensitivity of 36% °C-1 at 40 °C. Using NR-L64 niosomes, the temperature resolution is found to be 0.0004 °C at 40 °C. The nanothermometers displayed excellent photostability, thermal reversibility, and resistance to variations in ion concentration and pH. Temperature-dependent confocal microscopy using FaDu cells confirmed the biocompatibility and effectiveness of the designed nanothermometers for precise intracellular temperature sensing. The results demonstrate the significant potential of Nile Red-loaded niosomes for temperature monitoring using live cell imaging in biological media.
Collapse
Affiliation(s)
- Ronak Lazarus
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Rupal Kothari
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | | | - Amit Nag
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
2
|
París Ogáyar M, Ayed Z, Josserand V, Henry M, Artiga Á, Didonè L, Granado M, Serrano A, Espinosa A, Le Guével X, Jaque D. Luminescence Fingerprint of Intracellular NIR-II Gold Nanocluster Transformation: Implications for Sensing and Imaging. ACS NANO 2025; 19:7821-7834. [PMID: 39989214 DOI: 10.1021/acsnano.4c13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gold nanoclusters emitting in the second biological window (NIR-II-AuNCs) have gained significant interest for their potential in deep-tissue bioimaging and biosensing applications due to the partial transparency and reduced autofluorescence of tissues in this spectral range. However, the limited understanding of how the biological environment affects their luminescent properties might hinder their use in bioimaging and biosensing. In this study, we investigated the emission properties of NIR-II-AuNCs when interacting and internalizing into live cells including macrophages, fibroblasts, and cancer cell lines, revealing substantial alterations in their luminescence. A systematic comparison between control and in vitro experiments concluded that the disruption of surface ligands is the main factor responsible for these alterations. NIR-II-AuNCs within cellular environments may also be influenced by other interactions, including aggregation or complexation with proteins. Furthermore, we also corroborated these spectroscopic modifications at the in vivo level, providing additional evidence of the environmental sensitivity of NIR-II-AuNCs. The results obtained in this study contribute to a deeper understanding of the luminescence mechanisms of NIR-II-AuNCs in biological environments in cells and in living tissues and are crucial for their optimization as reliable tools in biological environment for in vitro and in vivo imaging and diagnostics.
Collapse
Affiliation(s)
- Marina París Ogáyar
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Zeineb Ayed
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Veronique Josserand
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Maxime Henry
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Álvaro Artiga
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Livia Didonè
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Miriam Granado
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Aida Serrano
- Instituto de Cerámica y Vidrio | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Xavier Le Guével
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Daniel Jaque
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28034 Madrid, Spain
| |
Collapse
|
3
|
Ge H, Zhan L, Chen H, Lv R, Wen Y, Chen M, Lu F, Yuan Z. Recent advances in fluorescent gold nanocluster-based bioanalytical analysis and imaging in living cell. Bioanalysis 2025; 17:199-210. [PMID: 39882743 PMCID: PMC11853653 DOI: 10.1080/17576180.2025.2457853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Ultrasmall and highly fluorescent gold nanoclusters (Au NCs) have been widely used for the construction of sensing and imaging platforms. Specifically, through a combination of surface functionalization and spectral analysis and/or imaging techniques, effective intracellular detection and imaging are realized. In this review, we summarize the recently adopted intracellular analysis and imaging events with Au NCs-based probes. The synthesis of Au NCs is briefly introduced based on stabilizer selection. The principles and applications of fluorometric intracellular detection systems toward different analytes, including small molecules and biomacromolecules, are presented by turnoff, turn-on, and ratiometric tactics. The cell imaging events are summarized based on conventional imaging and high-resolution imaging techniques, respectively. In the end, this review highlights the challenges of intracellular applications with Au NCs.
Collapse
Affiliation(s)
- Hanbing Ge
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Longhui Zhan
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Hao Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Ruibo Lv
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Yanbo Wen
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Mingxiang Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhiqin Yuan
- College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Liu M, Sun Y, Teh DBL, Zhang Y, Cao D, Mei Q. Nanothermometry for cellular temperature monitoring and disease diagnostics. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractBody temperature variations, including the generation, transfer, and dissipation of heat, play an important role throughout life and participate in all biological events. Cellular temperature information is an indispensable link in the comprehensive understanding of life science processes, but traditional testing strategies cannot provide sufficient information due to their low precision and inefficient cellular‐entrance. In recent years, with the help of luminescent nanomaterials, a variety of new thermometers have been developed to achieve real‐time temperature measurement at the micro/nano scale. In this review, we summarized the latest advances in several nanoparticles for cellular temperature detection and their related applications in revealing cell metabolism and disease diagnosis. Furthermore, this review proposed a few challenges for the nano‐thermometry, expecting to spark novel thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Daniel Boon Loong Teh
- Departments of Ophthalmology Anatomy Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Donglin Cao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University Guangzhou China
- Department of Laboratory Medicine Guangdong Second Provincial General Hospital Guangzhou China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| |
Collapse
|
5
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Li B, Yu S, Feng R, Qian Z, He K, Mao GJ, Cao Y, Tang K, Gan N, Wu YX. Dual-Mode Gold Nanocluster-Based Nanoprobe Platform for Two-Photon Fluorescence Imaging and Fluorescence Lifetime Imaging of Intracellular Endogenous miRNA. Anal Chem 2023; 95:14925-14933. [PMID: 37769239 DOI: 10.1021/acs.analchem.3c02216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Bioimaging is widely used in various fields of modern medicine. Fluorescence imaging has the advantages of high sensitivity, high selectivity, noninvasiveness, in situ imaging, and so on. However, one-photon (OP) fluorescence imaging has problems, such as low tissue penetration depth and low spatiotemporal resolution. These disadvantages can be solved by two-photon (TP) fluorescence imaging. However, TP imaging still uses fluorescence intensity as a signal. The complexity of organisms will inevitably affect the change of fluorescence intensity, cause false-positive signals, and affect the accuracy of the results obtained. Fluorescence lifetime imaging (FLIM) is different from other kinds of fluorescence imaging, which is an intrinsic property of the material and independent of the material concentration and fluorescence intensity. FLIM can effectively avoid the fluctuation of TP imaging based on fluorescence intensity and the interference of autofluorescence. Therefore, based on silica-coated gold nanoclusters (AuNCs@SiO2) combined with nucleic acid probes, the dual-mode nanoprobe platform was constructed for TP and FLIM imaging of intracellular endogenous miRNA-21 for the first time. First, the dual-mode nanoprobe used a dual fluorescence quencher of BHQ2 and graphene oxide (GO), which has a high signal-to-noise ratio and anti-interference. Second, the dual-mode nanoprobe can detect miR-21 with high sensitivity and selectivity in vitro, with a detection limit of 0.91 nM. Finally, the dual-mode nanoprobes performed satisfactory TP fluorescence imaging (330.0 μm penetration depth) and FLIM (τave = 50.0 ns) of endogenous miR-21 in living cells and tissues. The dual-mode platforms have promising applications in miRNA-based early detection and therapy and hold much promise for improving clinical efficacy.
Collapse
Affiliation(s)
- Bingqian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Rong Feng
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhiling Qian
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kangdi He
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Guo-Jiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
7
|
Zhou B, Fan K, Zhai J, Jin C, Kong L. Upconversion-Luminescent Fiber Microchannel Sensors for Temperature Monitoring at High Spatial Resolution in the Brains of Freely Moving Animals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303527. [PMID: 37712115 PMCID: PMC10602553 DOI: 10.1002/advs.202303527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Indexed: 09/16/2023]
Abstract
Brain temperature is a critical factor affecting neural activity and function, whose fluctuations may result in acute life-threatening health complications and chronic neuropathology. To monitor brain temperature, luminescent nanothermometry (LN) based on upconversion nanoparticles (UCNPs) with low autofluorescence has received extensive attention for its advantages in high temperature sensitivity and high response speed. However, most of current the LNs are based on optical imaging, which fails in temperature monitoring in deep brain regions at high spatial resolution. Here, the fiber microchannel sensor (FMS) loaded with UCNPs (UCNP-FMS) is presented for temperature monitoring at high spatial resolution in the deep brains of freely moving animals. The UCNP-FMS is fabricated by incorporating UCNPs in microchannels of optical fibers, whose diameter is ∼50 µm processed by femtosecond laser micromachining for spatially resolved sensing. The UCNPs provide thermal-sensitive upconversion emissions at dual wavelengths for ratiometric temperature sensing, ensuring a detection accuracy of ± 0.3 °C at 37 °C. Superior performances of UCNP-FMS are demonstrated by real-time temperature monitoring in different brain regions of freely moving animals under various conditions such as taking food, undergoing anesthesia/wakefulness, and suffering external temperature changes. Moreover, this study shows the capability of UCNP-FMS in distributed temperature sensing in mammalian brains in vivo.
Collapse
Affiliation(s)
- Bingqian Zhou
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Kuikui Fan
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Jiazhen Zhai
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Cheng Jin
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijing100084China
| |
Collapse
|
8
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Wang Y, Wang P, Li C. Fluorescence microscopic platforms imaging mitochondrial abnormalities in neurodegenerative diseases. Adv Drug Deliv Rev 2023; 197:114841. [PMID: 37088402 DOI: 10.1016/j.addr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Neurodegenerative diseases (NDs) are progressive disorders that cause the degeneration of neurons. Mitochondrial dysfunction is a common symptom in NDs and plays a crucial role in neuronal loss. Mitochondrial abnormalities can be observed in the early stages of NDs and evolve throughout disease progression. Visualizing mitochondrial abnormalities can help understand ND progression and develop new therapeutic strategies. Fluorescence microscopy is a powerful tool for dynamically imaging mitochondria due to its high sensitivity and spatiotemporal resolution. This review discusses the relationship between mitochondrial dysfunction and ND progression, potential biomarkers for imaging dysfunctional mitochondria, advances in fluorescence microscopy for detecting organelles, the performance of fluorescence probes in visualizing ND-associated mitochondria, and the challenges and opportunities for developing new generations of fluorescence imaging platforms for monitoring mitochondria in NDs.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University Shanghai 201203, China.
| |
Collapse
|
10
|
Kuznetsov KM, Baigildin VA, Solomatina AI, Galenko EE, Khlebnikov AF, Sokolov VV, Tunik SP, Shakirova JR. Polymeric Nanoparticles with Embedded Eu(III) Complexes as Molecular Probes for Temperature Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248813. [PMID: 36557943 PMCID: PMC9785794 DOI: 10.3390/molecules27248813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Three novel luminescent Eu(III) complexes, Eu1-Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243-1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1-NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent).
Collapse
Affiliation(s)
- Kirill M. Kuznetsov
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Vadim A. Baigildin
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Anastasia I. Solomatina
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Ekaterina E. Galenko
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Alexander F. Khlebnikov
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Victor V. Sokolov
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Sergey P. Tunik
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (S.P.T.); (J.R.S.)
| | - Julia R. Shakirova
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (S.P.T.); (J.R.S.)
| |
Collapse
|
11
|
Deng Z, Li J, Liu H, Luo T, Yang Y, Yang M, Chen X. A light-controlled DNA nanothermometer for temperature sensing in the cellular membrane microenvironment. Biosens Bioelectron 2022; 216:114627. [PMID: 35973279 DOI: 10.1016/j.bios.2022.114627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Precise sensing of cellular temperature is one significant yet challenge task for studying miscellaneous biological processes. Herein, we report a light-controlled DNA nanothermometer that allow for real-time thermal sensing in extracellular microscope with high spatiotemporal resolution. The light-controlled DNA nanothermometer three key elements: a thermal-sensitive molecular beacon (MB) labelled with fluorophore Cy5 and Cy3 at its 5' and 3' termini, an inhibitor strand containing two photocleavable linkers (pc-linker), and a biotin modified strand, which could modify this three-strand hybridization complex onto the cell surface. Upon exposing to UV light irradiation, the light-controlled DNA nanothermometer could be remotely activated and enable to perform highly sensitive and practical ratiometric temperature sensing. Meanwhile, the light-controlled DNA nanothermometer could conduct temperature sensing in the extracellular microscope and demonstrates desirable sensitivity, excellent reversibility, and quantitative ability for extracellular temperature measurement. Therefore, this light-controlled DNA can serve as a promising tool for elucidating thermal-related cell physiological and pathological processes.
Collapse
Affiliation(s)
- Zhiwei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiacheng Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tong Luo
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanjing Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
| |
Collapse
|
12
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
13
|
Yang N, Xu J, Wang F, Yang F, Han D, Xu S. Thermal Probing Techniques for a Single Live Cell. SENSORS (BASEL, SWITZERLAND) 2022; 22:5093. [PMID: 35890773 PMCID: PMC9317922 DOI: 10.3390/s22145093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023]
Abstract
Temperature is a significant factor in determining and characterizing cellular metabolism and other biochemical activities. In this study, we provide a brief overview of two important technologies used to monitor the local temperatures of individual living cells: fluorescence nano-thermometry and an array of micro-/nano-sized thin-film thermocouples. We explain some key technical issues that must be addressed and optimised for further practical applications, such as in cell biology, drug selection, and novel antitumor therapy. We also offer a method for combining them into a hybrid measuring system.
Collapse
Affiliation(s)
- Nana Yang
- School of Microelectronics, Shandong University, Jinan 250100, China; (N.Y.); (F.W.)
- School of Electronics, Peking University, Beijing 100871, China; (F.Y.); (D.H.); (S.X.)
| | - Jingjing Xu
- School of Electronics, Peking University, Beijing 100871, China; (F.Y.); (D.H.); (S.X.)
| | - Fan Wang
- School of Microelectronics, Shandong University, Jinan 250100, China; (N.Y.); (F.W.)
| | - Fan Yang
- School of Electronics, Peking University, Beijing 100871, China; (F.Y.); (D.H.); (S.X.)
| | - Danhong Han
- School of Electronics, Peking University, Beijing 100871, China; (F.Y.); (D.H.); (S.X.)
- Beijing Research Institute of Mechanical Equipment, Beijing 100854, China
| | - Shengyong Xu
- School of Electronics, Peking University, Beijing 100871, China; (F.Y.); (D.H.); (S.X.)
| |
Collapse
|
14
|
Yang T, Xie Y, Zhang S, He X. Synthesis of Dual Red‐Emitting Fluorescent Silver Nanoclusters in Aqueous Lipoic Acid‐Based Polymer Solutions and Application for Cu
2+
Detection and Cell Imaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202200185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Yang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Yangchun Xie
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy East China Normal University Shanghai 200241 China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| |
Collapse
|