1
|
Chen J, Zhang X, Lu H, Wu Y, Xu Y, Guo L. Hydroxyl and phenyl co-modified carbon nitride-based ratiometric fluorescent nanoprobe for monitoring mitochondrial pH in live cells and differentiating cell death. Talanta 2025; 291:127843. [PMID: 40056646 DOI: 10.1016/j.talanta.2025.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Monitoring mitochondrial pH and differentiating live and dead cells are crucial for diagnosing cell status. However, most fluorescent probes suffer from limitations such as high cytotoxicity, photobleaching, unreliability, and an inability to differentiate cell death caused by different inducers. Herein, a ratiometric fluorescent nanoprobe was developed by assembling pH-sensitive hydroxyl- and phenyl-co-modified carbon nitride (HPCN) with pH-insensitive Rhodamine B (RB). HPCN was prepared via thermal condensation of phenylguanidine carbonate using NaOH as the melt. The hydroxyl group modification endowed HPCN with improved water solubility and pH-sensitive characteristics, while the phenyl group modification facilitated mitochondrial targeting and DNA staining via hydrophobic interactions. Based on the fluorescence resonance energy transfer (FRET) from HPCN to RB, the nanoprobe exhibited a linear response in the relative fluorescence intensities at 500 nm and 584 nm over a pH range of 4.5-8.5. Benefiting from its low cytotoxicity, excellent reversibility, and outstanding photostability, the nanoprobe was capable of monitoring mitochondrial pH changes in live cells and differentiating live and dead cells, apoptosis and necrosis, and necrosis induced by different agents, regardless of cell type. This work provides a reliable method for diagnosing cell status and cell death induced by various inducers.
Collapse
Affiliation(s)
- Jingru Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiaomin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Heng Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yali Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yuanteng Xu
- Department of Otorhinolaryngology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
2
|
Zhang Z, Luo X, Wang X, Liu M, Yue X, Zheng Z. A Ratiometric Fluorescence Nano pH Biosensor for Live-Cell Imaging Using Cerasome. BIOSENSORS 2025; 15:114. [PMID: 39997016 PMCID: PMC11852597 DOI: 10.3390/bios15020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
The development of a robust and biocompatible pH-sensing platform is critical for monitoring intracellular processes and diagnosing diseases. Here, we present a smart ultrastable ratiometric fluorescence nano pH sensor based on silica-coated liposome nanoparticles (cerasome, 138.4 nm). The sensor integrates pH-sensitive dye, pyranine, within cerasome, achieving enhanced photostability, sensitivity, and biocompatibility. Its unique ratiometric design enables precise pH monitoring with minimal photobleaching and quenching, covering a linear detection range of pH 6.25-8.5. The hybrid nanoparticles exhibit high morphological stability, making them suitable for real-time intracellular pH measurement. This novel platform shows great promise for applications in cellular biology, disease diagnosis, and therapeutic monitoring, offering a versatile tool for biomedical research.
Collapse
Affiliation(s)
- Zhongqiao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoshan Luo
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China (X.W.)
| | - Xuanbo Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China (X.W.)
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Xiuli Yue
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China (X.W.)
| |
Collapse
|
3
|
Schniererová K, Janeková H, Joniak J, Putala M, Štacko P, Stankovičová H. pH-Responsive Aminobenzocoumarins as Fluorescent Probes for Biological Acidity. Chemistry 2024; 30:e202400111. [PMID: 38470944 DOI: 10.1002/chem.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Regulation of pH plays an essential role in orchestrating the delicate cellular machinery responsible for life as we know it. Its abnormal values are indicative of aberrant cellular behavior and associated with pathologies including cancer progression or solid tumors. Here, we report a series of bent and linear aminobenzocoumarins decorated with different substituents. We investigate their photophysical properties and demonstrate that the probes display strong pH-responsive fluorescence "turn on" behavior in highly acidic environments, with enhancement up to 300-fold. In combination with their low cytotoxicity, this behavior enabled their application in bioimaging of acidic lysosomes in live human cells. We believe that these molecules serve as attractive lead structures for future rational design of novel biocompatible fluorescent pH probes.
Collapse
Affiliation(s)
- Karin Schniererová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Hana Janeková
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jakub Joniak
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Martin Putala
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Peter Štacko
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | - Henrieta Stankovičová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
4
|
Deng Z, Ding J, Bu J, Li J, Liu H, Gao P, Gong Z, Qin X, Yang Y, Zhong S. Fluorophore Label-Free Light-up Near Infrared Deoxyribonucleic Acid Nanosensor for Monitoring Extracellular Potassium Levels. Anal Chem 2024; 96:4023-4030. [PMID: 38412242 DOI: 10.1021/acs.analchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fluorescent DNA nanosensors have been widely used due to their unique advantages, among which the near-infrared (NIR) imaging mode can provide deeper penetration depth and lower biological background for the nanosensors. However, efficient NIR quenchers require ingenious design, complex synthesis, and modification, which severely limit the development of NIR DNA nanosensors. Label-free strategies based on G-quadruplex (G4) and NIR G4 dyes were first introduced into in situ extracellular imaging, and a novel NIR sensing strategy for the specific detection of extracellular targets is proposed. The strategy avoids complex synthesis and site-specific modification by controlling the change of the NIR signal through the formation of a G4 nanostructure. A light-up NIR DNA nanosensor based on potassium ion (K+)-sensitive G4 chain PS2.M was constructed to verify the strategy. PS2.M forms a stable G4 nanostructure in the presence of K+ and activates the NIR G4 dye CSTS, thus outputting NIR signals. The nanosensor can rapidly respond to K+ with a linear range of 5-50 mM and has good resistance to interference. The nanosensor with cholesterol can provide feedback on the changes in extracellular K+ concentration in many kinds of cells, serving as a potential tool for the study of diseases such as epilepsy and cancer, as well as the development of related drugs. The strategy can be potentially applied to the NIR detection of a variety of extracellular targets with the help of functional DNAs such as aptamer and DNAzyme.
Collapse
Affiliation(s)
- Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Peiru Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, PR China
| |
Collapse
|
5
|
Ma J, Lu X, Hao M, Wang Y, Guo Y, Wang Z. Real-time visualization the pH fluctuations of living cells with a ratiometric near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123572. [PMID: 37922853 DOI: 10.1016/j.saa.2023.123572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
In situ real-time quantitative monitoring pH fluctuation in complex living systems is vitally significant. In the current work, a ratiometric near-infrared (NIR) probe (MCyOH) was developed to confront this challenge. MCyOH exhibited good sensitivity, photostability, reversibility, and an ideal pKa (pKa = 6.65). Ratiometric character of MCyOH is beneficial to accuracy detect the pH fluctuations in living cells under different stimulation. The observations showed that intracellular pH was decreased when HepG2 cells under oxidative stress or starvation conditions. In particular, HepG2 cells was acidulated after addition of ethanol, however, the acidification phenomenon was attenuated or disappeared when HepG2 cells preincubated with disulfiram or fomepizole. Finally, MCyOH was successfully applied to observe the increasement of intracellular pH when HepG2 cells treated with fomepizole individually. Overall, MCyOH would be a practical candidate to explore pH-associated physiological and pathological varieties.
Collapse
Affiliation(s)
- Jianlong Ma
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China; Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Mingyao Hao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yumeng Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China.
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China.
| |
Collapse
|
6
|
Nirmal G, Liao CC, Lin ZC, Alshetaili A, Hwang E, Yang SC, Fang JY. Topically applied pH-responsive nanogels for alkyl radical-based therapy against psoriasiform hyperplasia. Drug Deliv 2023; 30:2245169. [PMID: 37585684 PMCID: PMC10416745 DOI: 10.1080/10717544.2023.2245169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Phototherapy is a conventional antipsoriatic approach based on oxygen-relevant generation of oxidative stress to inhibit keratinocyte hyperproliferation. However, this therapy can be restricted due to local hypoxia in psoriatic lesions. The generation of alkyl radicals is oxygen-independent and suppresses hyperproliferation. Herein, we established alkyl radical-based therapy to treat psoriatic hyperplasia. Because alkyl radicals are short-lived compounds, we loaded 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) as a precursor of alkyl radicals into the chitosan nanogels to improve stability. The present study presented a topically applied nanogel that led to a pH-responsive network sensitive to skin pH. This pH responsiveness of the nanogels allowed fast alkyl radical release in the target site. The physicochemical properties of the prepared nanogels were determined through size, zeta potential, scanning electron microscopy, and absorption spectroscopy. The antipsoriatic activity was examined with keratinocyte- and animal-based studies. The nanogels displayed a smooth and spherical morphology with a hydrodynamic diameter of 215 nm. This size was largely increased as the environmental pH increased to 6. The nanogels heated at 44 °C produced alkyl radicals to induce keratinocyte death through the necrosis pathway. Bioimaging demonstrated that topically applied nanogels could deliver alkyl radicals into the epidermis. This targeting was accompanied by the accumulation of free radicals in the epidermis according to the 2',7'-dichlorodihydrofluorescein diacetate assay. The imiquimod-stimulated psoriasiform animal model indicated a remarkable reduction in erythema, scaling, and overexpressed cytokines upon topical treatment of the nanogels. The transepidermal water loss of the psoriasiform skin was inhibited from 51.7 to 27.0 g/m2/h, suggesting barrier function recovery by the nanocarriers. The nanogels lowered hyperplasia by decreasing the epidermal thickness from 212 to 89 μm. The incorporation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as a pH-sensitive fluorescence dye in the nanogels could be used to diagnose the severity of the psoriasiform plaque due to the stronger fluorescence of HPTS in skin with lower pH (psoriasiform skin pH = 4.4) than in healthy skin (pH = 4.9). It was possible to deliver the prepared nanogels into the epidermis to restrain hyperplasia without causing cutaneous irritation.
Collapse
Affiliation(s)
- G.R. Nirmal
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taiwan
| |
Collapse
|
7
|
Santhoshkumar S, Madhu M, Tseng WB, Tseng WL. Gold nanocluster-based fluorescent sensors for in vitro and in vivo ratiometric imaging of biomolecules. Phys Chem Chem Phys 2023; 25:21787-21801. [PMID: 37577965 DOI: 10.1039/d3cp02714g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gold nanoclusters (AuNCs) are promising nanomaterials for ratiometric fluorescent probes due to their tunable fluorescence wavelengths dependent on size and structure, as well as their biocompatibility and resistance to photobleaching. By incorporating an additional fluorescence spectral peak, dual-emission AuNC-based fluorescent probes have been developed to enhance the signal output reproducibility. These probes can be fabricated by integrating various luminescent nanomaterials with AuNCs. This review focuses on the preparation methods and applications of ratiometric fluorescent probes derived from AuNCs and other fluorescent nanomaterials or fluorescent dyes for both in vitro and in vivo bioimaging of target analytes. Additionally, the review delves into the sensing mechanisms of AuNC-based ratiometric probes, their synthetic strategies, and the challenges encountered when using AuNCs for ratiometric bioimaging. Moreover, we explore the application of protein-stabilized AuNCs and thiolate-capped AuNC-based ratiometric fluorescent probes for biosensing and bioimaging. Two primary methods for assembling AuNCs and fluorophores into ratiometric fluorescent probes are discussed: triggered assembly and self-assembly. Finally, we address the challenges and issues associated with ratiometric bioimaging using AuNCs and propose future directions for further advancing AuNCs as ratiometric imaging agents.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Department of Environmental Engineering, Da-Yeh University, No. 168, University Rd., Dacun, Changhua 515006, Taiwan.
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Xiao H, Yang X, Yang L, Yang D, Luo Y, Yang HP, Tao Z, Xiao X, Li Q. Cucurbit [8] uril-based supramolecular fluorescent biomaterials for cytotoxicity and imaging studies of kidney cells. Front Chem 2022; 10:974607. [PMID: 36092664 PMCID: PMC9451006 DOI: 10.3389/fchem.2022.974607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An accurate diagnosis of acute kidney injury (AKI) at the early stage is critical to not only allow preventative treatments in time but also forecast probable medication toxicity for preventing AKI from starting and progressing to severe kidney damage and death. Therefore, supramolecular fluorescent biomaterials based on Q [8] and PEG-APTS have been prepared herein. This study has found that the unique properties of outer surface methine and the positive density of Q [8] can form a stable assembly with PEG-APTS, and has provided the possibility for the faster crossing of the glomerular filtration barrier to enter into the resident cells of the kidney. In addition to the excellent fluorescence properties, the as-synthesized biomaterial Q [8]@PEG-APTS has possessed significantly low biological toxicity. Most importantly, the accumulation of Q [8]@PEG-APTS in large amounts in cytoplasm and nucleus of HK2 and HMCs cells, respectively, within 24 h enabled distinguishing kidney cells when diagnosing and providing some foundation for early AKI.
Collapse
Affiliation(s)
- Han Xiao
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xia Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Hai-Ping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
9
|
Deb M, Hassan N, Chowdhury D, Sanfui MH, Roy S, Bhattacharjee C, Majumdar S, Chattopadhyay PK, Singha NR. Nontraditional Redox Active Aliphatic Luminescent Polymer for Ratiometric pH Sensing and Sensing-Removal-Reduction of Cu(II): Strategic Optimization of Composition. Macromol Rapid Commun 2022; 43:e2200317. [PMID: 35798327 DOI: 10.1002/marc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Here, redox active aliphatic luminescent polymers (ALPs) are synthesized via polymerization of N,N-dimethyl-2-propenamide (DMPA) and 2-methyl-2-propenoic acid (MPA). The structures and properties of the optimum ALP3, ALP3-aggregate and Cu(I)-ALP3, ratiometric pH sensing, redox activity, aggregation enhanced emission (AEE), Stokes shift, and oxygen-donor selective coordination-reduction of Cu(II) to Cu(I) are explored via spectroscopic, microscopic, density functional theory-reduced density gradient (DFT-RDG), fluorescence quenching, adsorption isotherm-thermodynamics, and electrochemical methods. The intense blue and green fluorescence of ALP3 emerges at pH = 7.0 and 9.0, respectively, due to alteration of fluorophores from -C(═O)N(CH3 )2 / -C(═O)OH to -C(O- )═N+ (CH3 )2 / -C(═O)O- , inferred from binding energies at 401.32 eV (-C(O- )═N+ (CH3 )2 ) and 533.08 eV (-C(═O)O- ), significant red shifting in absorption and emission spectra, and peak at 2154 cm-1 . The n-π* communications in ALP3-aggregate, hydrogen bondings within 2.34-2.93 Å (intramolecular) in ALP3 and within 1.66-2.89 Å (intermolecular) in ALP3-aggregate, respectively, contribute significantly in fluorescence, confirmed from NMR titration, ratiometric pH sensing, AEE, excitation dependent emission, and Stokes shift and DFT-RDG analyses. For ALP3, Stokes shift, excellent limit of detection, adsorption capacity, and redox potentials are 13561 cm-1 /1.68 eV, 0.137 ppb, 122.93 mg g-1 , and 0.33/-1.04 V at pH 7.0, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
10
|
Peng Y, Gao L, Pidamaimaiti G, Zhao D, Zhang L, Yin G, Wang F. Facile construction of highly luminescent and biocompatible gold nanoclusters by shell rigidification for two-photon pH-edited cytoplasmic and in vivo imaging. NANOSCALE 2022; 14:8342-8348. [PMID: 35635039 DOI: 10.1039/d2nr01078j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanoclusters (AuNCs), as a novel fluorescent material, have been extensively explored and developed for bioimaging because of their attractive advantages such as ultrasmall size, low toxicity and exceptional two-photon excitation properties. However, it still remains a challenge to produce water-soluble, biocompatible and ultrabright AuNCs. Herein, we report on a novel one-pot synthesis of highly luminescent and biocompatible AuNCs by using polyvinyl pyrrolidone (PVP), a water-soluble polymer, to rigidify the primary stabilizing layer (shell) that is composed of 6-aza-2-thiothymine (ATT) ligands bound to the particle. Such shell-rigidification resulted in a significant enhancement of the fluorescence efficiency, reaching a quantum yield of 39% under the best conditions, about 35-fold increase from the intrinsically weak fluorescence of the AuNCs stabilized by only ATT. The fluorescence enhancement mechanism was systematically characterized, and the results indicate that PVP coating rigidifies the ATT ligand shell through steric hindrance and reduces the nonradiative relaxation of the excited states. The biocompatible PVP-AuNCs were further examined for two-photon cellular and sentinel lymph node (SLN) bioimaging, and we observed pH-dependent cytoplasmic images and intense green fluorescence in SLN and lymphatic vessels.
Collapse
Affiliation(s)
- Yaowei Peng
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Gao
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guligena Pidamaimaiti
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Dan Zhao
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 151 W. Woodruff Ave., Columbus, OH 43210, USA
| | - Guowei Yin
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Fu Wang
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Qian M, Zhang D, Qi H, Yang X, Yin G, Zhang C, Guo J, Qi H. pH-responsive aldehyde-bearing cyclometalated iridium(III) complex for tracking intracellular pH fluctuations under external stimulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|